forked from sheetjs/docs.sheetjs.com
729 lines
20 KiB
Markdown
729 lines
20 KiB
Markdown
|
---
|
||
|
title: Summary Statistics
|
||
|
sidebar_label: Summary Statistics
|
||
|
pagination_prev: demos/index
|
||
|
pagination_next: demos/frontend/index
|
||
|
---
|
||
|
|
||
|
import current from '/version.js';
|
||
|
import Tabs from '@theme/Tabs';
|
||
|
import TabItem from '@theme/TabItem';
|
||
|
import CodeBlock from '@theme/CodeBlock';
|
||
|
|
||
|
export const bs = ({borderStyle:"none", background:"none", textAlign:"left" });
|
||
|
|
||
|
Summary statistics help people quickly understand datasets and make informed
|
||
|
decisions. Many interesting datasets are stored in spreadsheet files.
|
||
|
|
||
|
[SheetJS](https://sheetjs.com) is a JavaScript library for reading and writing
|
||
|
data from spreadsheets.
|
||
|
|
||
|
This demo uses SheetJS to process data in spreadsheets. We'll explore how to
|
||
|
extract spreadsheet data and how to compute simple summary statistics. This
|
||
|
demo will focus on two general data representations:
|
||
|
|
||
|
- ["Arrays of Objects"](#arrays-of-objects) simplifies processing by translating
|
||
|
from the SheetJS data model to a more idiomatic data structure.
|
||
|
- ["Dense Worksheets"](#dense-worksheets) directly analyzes SheetJS worksheets.
|
||
|
|
||
|
:::tip pass
|
||
|
|
||
|
The [Import Tutorial](/docs/getting-started/examples/import) is a guided example
|
||
|
of extracting data from a workbook. It is strongly recommended to review the
|
||
|
tutorial first.
|
||
|
|
||
|
:::
|
||
|
|
||
|
:::note Tested Deployments
|
||
|
|
||
|
This browser demo was tested in the following environments:
|
||
|
|
||
|
| Browser | Date |
|
||
|
|:------------|:-----------|
|
||
|
| Chrome 119 | 2024-01-06 |
|
||
|
|
||
|
:::
|
||
|
|
||
|
## Data Representations
|
||
|
|
||
|
Many worksheets include one header row followed by a number of data rows. Each
|
||
|
row is an "observation" and each column is a "variable".
|
||
|
|
||
|
:::info pass
|
||
|
|
||
|
The "Array of Objects" explanations use more idiomatic JavaScript patterns. It
|
||
|
is suitable for smaller datasets.
|
||
|
|
||
|
The "Dense Worksheets" approach is more performant, but the code patterns are
|
||
|
reminiscent of C. The low-level approach is only encouraged when the traditional
|
||
|
patterns are prohibitively slow.
|
||
|
|
||
|
:::
|
||
|
|
||
|
### Arrays of Objects
|
||
|
|
||
|
The idiomatic JavaScript representation of the dataset is an array of objects.
|
||
|
Variable names are typically taken from the first row. Those names are used as
|
||
|
keys in each observation.
|
||
|
|
||
|
<table><thead><tr><th>Spreadsheet</th><th>JS Data</th></tr></thead><tbody><tr><td>
|
||
|
|
||
|
![`pres.xlsx` data](pathname:///pres.png)
|
||
|
|
||
|
</td><td>
|
||
|
|
||
|
```js
|
||
|
[
|
||
|
{ Name: "Bill Clinton", Index: 42 },
|
||
|
{ Name: "GeorgeW Bush", Index: 43 },
|
||
|
{ Name: "Barack Obama", Index: 44 },
|
||
|
{ Name: "Donald Trump", Index: 45 },
|
||
|
{ Name: "Joseph Biden", Index: 46 }
|
||
|
]
|
||
|
```
|
||
|
|
||
|
</td></tr></tbody></table>
|
||
|
|
||
|
The SheetJS `sheet_to_json` method[^1] can generate arrays of objects from a
|
||
|
worksheet object. For example, the following snippet fetches a test file and
|
||
|
creates an array of arrays from the first sheet:
|
||
|
|
||
|
```js
|
||
|
const url = "https://docs.sheetjs.com/typedarray/iris.xlsx";
|
||
|
|
||
|
/* fetch file and pull file data into an ArrayBuffer */
|
||
|
const file = await (await fetch(url)).arrayBuffer();
|
||
|
|
||
|
/* parse workbook */
|
||
|
const workbook = XLSX.read(file, {dense: true});
|
||
|
|
||
|
/* first worksheet */
|
||
|
const first_sheet = workbook.Sheets[workbook.SheetNames[0]];
|
||
|
|
||
|
/* generate array of arrays */
|
||
|
// highlight-next-line
|
||
|
const aoo = XLSX.utils.sheet_to_json(first_sheet);
|
||
|
```
|
||
|
|
||
|
### Dense Worksheets
|
||
|
|
||
|
SheetJS "dense" worksheets[^2] store cells in an array of arrays. The SheetJS
|
||
|
`read` method[^3] accepts a special `dense` option to create dense worksheets.
|
||
|
|
||
|
The following example fetches a file:
|
||
|
|
||
|
```js
|
||
|
/* fetch file and pull file data into an ArrayBuffer */
|
||
|
const url = "https://docs.sheetjs.com/typedarray/iris.xlsx";
|
||
|
const file = await (await fetch(url)).arrayBuffer();
|
||
|
|
||
|
/* parse workbook */
|
||
|
// highlight-next-line
|
||
|
const workbook = XLSX.read(file, {dense: true});
|
||
|
|
||
|
/* first worksheet */
|
||
|
const first_dense_sheet = workbook.Sheets[workbook.SheetNames[0]];
|
||
|
```
|
||
|
|
||
|
The `"!data"` property of a dense worksheet is an array of arrays of cell
|
||
|
objects[^4]. Cell objects include attributes including data type and value.
|
||
|
|
||
|
## Analyzing Variables
|
||
|
|
||
|
Individual variables can be extracted by looping through the array of objects
|
||
|
and accessing specific keys. For example, using the Iris dataset:
|
||
|
|
||
|
![Iris dataset](pathname:///typedarray/iris.png)
|
||
|
|
||
|
<Tabs groupId="style">
|
||
|
<TabItem name="aoo" value="Array of Objects">
|
||
|
|
||
|
The following snippet shows the first entry in the array of objects:
|
||
|
|
||
|
```js
|
||
|
{
|
||
|
"sepal length": 5.1,
|
||
|
"sepal width": 3.5,
|
||
|
"petal length": 1.4,
|
||
|
"petal width": 0.2,
|
||
|
"class ": "Iris-setosa"
|
||
|
}
|
||
|
```
|
||
|
|
||
|
The values for the `sepal length` variable can be extracted by indexing each
|
||
|
object. The following snippet prints the sepal lengths:
|
||
|
|
||
|
```js
|
||
|
for(let i = 0; i < aoo.length; ++i) {
|
||
|
const row = aoo[i];
|
||
|
const sepal_length = row["sepal length"];
|
||
|
console.log(sepal_length);
|
||
|
}
|
||
|
```
|
||
|
|
||
|
```jsx live
|
||
|
function SheetJSAoOExtractColumn() {
|
||
|
const [col, setCol] = React.useState([]);
|
||
|
|
||
|
React.useEffect(() => { (async() => {
|
||
|
const ab = await (await fetch("/typedarray/iris.xlsx")).arrayBuffer();
|
||
|
const wb = XLSX.read(ab, {dense: true});
|
||
|
const aoo = XLSX.utils.sheet_to_json(wb.Sheets[wb.SheetNames[0]]);
|
||
|
/* store first 5 sepal lengths in an array */
|
||
|
const col = [];
|
||
|
for(let i = 0; i < aoo.length; ++i) {
|
||
|
const row = aoo[i];
|
||
|
const sepal_length = row["sepal length"];
|
||
|
col.push(sepal_length); if(col.length >= 5) break;
|
||
|
}
|
||
|
setCol(col);
|
||
|
})(); }, []);
|
||
|
|
||
|
return ( <>
|
||
|
<b>First 5 Sepal Length Values</b><br/>
|
||
|
<table><tbody>
|
||
|
{col.map(sw => (<tr><td>{sw}</td></tr>))}
|
||
|
</tbody></table>
|
||
|
</>
|
||
|
);
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</TabItem>
|
||
|
<TabItem name="ws" value="Dense Worksheet">
|
||
|
|
||
|
The column for the `sepal length` variable can be determined by testing the cell
|
||
|
values in the first row.
|
||
|
|
||
|
**Finding the column index for the variable**
|
||
|
|
||
|
The first row of cells will be the first row in the `"!data"` array:
|
||
|
|
||
|
```js
|
||
|
const first_row = first_dense_sheet["!data"][0];
|
||
|
```
|
||
|
|
||
|
When looping over the cells in the first row, the cell must be tested in the
|
||
|
following order:
|
||
|
|
||
|
- confirm the cell object exists (entry is not null)
|
||
|
- cell is a text cell (the `t` property will be `"s"`[^5])
|
||
|
- cell value (`v` property[^6]) matches `"sepal length"`
|
||
|
|
||
|
```js
|
||
|
let C = -1;
|
||
|
for(let i = 0; i < first_row.length; ++i) {
|
||
|
let cell = first_row[i];
|
||
|
/* confirm cell exists */
|
||
|
if(!cell) continue;
|
||
|
/* confirm cell is a text cell */
|
||
|
if(cell.t != "s") continue;
|
||
|
/* compare the text */
|
||
|
if(cell.v.localeCompare("sepal length") != 0) continue;
|
||
|
/* save column index */
|
||
|
C = i; break;
|
||
|
}
|
||
|
/* throw an error if the column cannot be found */
|
||
|
if(C == -1) throw new Error(`"sepal length" column cannot be found! `);
|
||
|
```
|
||
|
|
||
|
**Finding the values for the variable**
|
||
|
|
||
|
After finding the column index, the rest of the rows can be scanned. This time,
|
||
|
the cell type will be `"n"`[^7] (numeric). The following snippet prints values:
|
||
|
|
||
|
```js
|
||
|
const number_of_rows = first_dense_sheet["!data"].length;
|
||
|
for(let R = 1; R < number_of_rows; ++R) {
|
||
|
/* confirm row exists */
|
||
|
let row = first_dense_sheet["!data"][R];
|
||
|
if(!row) continue;
|
||
|
/* confirm cell exists */
|
||
|
let cell = row[C];
|
||
|
if(!cell) continue;
|
||
|
/* confirm cell is a numeric cell */
|
||
|
if(cell.t != "n") continue;
|
||
|
/* print raw value */
|
||
|
console.log(cell.v);
|
||
|
}
|
||
|
```
|
||
|
|
||
|
**Live Demo**
|
||
|
|
||
|
The following snippet prints the sepal lengths:
|
||
|
|
||
|
```js
|
||
|
for(let i = 0; i < aoo.length; ++i) {
|
||
|
const row = aoo[i];
|
||
|
const sepal_length = row["sepal length"];
|
||
|
console.log(sepal_length);
|
||
|
}
|
||
|
```
|
||
|
|
||
|
```jsx live
|
||
|
function SheetJSDensExtractColumn() {
|
||
|
const [msg, setMsg] = React.useState("");
|
||
|
const [col, setCol] = React.useState([]);
|
||
|
|
||
|
React.useEffect(() => { (async() => {
|
||
|
const ab = await (await fetch("/typedarray/iris.xlsx")).arrayBuffer();
|
||
|
const wb = XLSX.read(ab, {dense: true});
|
||
|
/* first worksheet */
|
||
|
const first_dense_sheet = wb.Sheets[wb.SheetNames[0]];
|
||
|
|
||
|
/* find column index */
|
||
|
const first_row = first_dense_sheet["!data"][0];
|
||
|
let C = -1;
|
||
|
for(let i = 0; i < first_row.length; ++i) {
|
||
|
let cell = first_row[i];
|
||
|
/* confirm cell exists */
|
||
|
if(!cell) continue;
|
||
|
/* confirm cell is a text cell */
|
||
|
if(cell.t != "s") continue;
|
||
|
/* compare the text */
|
||
|
if(cell.v.localeCompare("sepal length") != 0) continue;
|
||
|
/* save column index */
|
||
|
C = i; break;
|
||
|
}
|
||
|
/* throw an error if the column cannot be found */
|
||
|
if(C == -1) return setMsg(`"sepal length" column cannot be found! `);
|
||
|
|
||
|
/* store first 5 sepal lengths in an array */
|
||
|
const col = [];
|
||
|
const number_of_rows = first_dense_sheet["!data"].length;
|
||
|
for(let R = 1; R < number_of_rows; ++R) {
|
||
|
/* confirm row exists */
|
||
|
let row = first_dense_sheet["!data"][R];
|
||
|
if(!row) continue;
|
||
|
/* confirm cell exists */
|
||
|
let cell = row[C];
|
||
|
if(!cell) continue;
|
||
|
/* confirm cell is a numeric cell */
|
||
|
if(cell.t != "n") continue;
|
||
|
/* add raw value */
|
||
|
const sepal_length = cell.v;
|
||
|
col.push(sepal_length); if(col.length >= 5) break;
|
||
|
}
|
||
|
|
||
|
setCol(col);
|
||
|
setMsg("First 5 Sepal Length Values");
|
||
|
})(); }, []);
|
||
|
|
||
|
return ( <><b>{msg}</b><br/><table><tbody>
|
||
|
{col.map(sw => (<tr><td>{sw}</td></tr>))}
|
||
|
</tbody></table></> );
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</TabItem>
|
||
|
</Tabs>
|
||
|
|
||
|
## Average (Mean)
|
||
|
|
||
|
For a given sequence of numbers $x_1\mathellipsis x_{count}$ the mean $M$ is
|
||
|
defined as the sum of the elements divided by the count:
|
||
|
|
||
|
$$
|
||
|
M[x;count] = \frac{1}{count}\sum_{i=1}^{count} x_i
|
||
|
$$
|
||
|
|
||
|
In JavaScript terms, the mean of an array is the sum of the numbers in the array
|
||
|
divided by the total number of numeric values.
|
||
|
|
||
|
Non-numeric elements and array holes do not affect the sum and do not contribute
|
||
|
to the count. Algorithms are expected to explicitly track the count and cannot
|
||
|
assume the array `length` property will be the correct count.
|
||
|
|
||
|
:::info pass
|
||
|
|
||
|
This definition aligns with the spreadsheet `AVERAGE` function.
|
||
|
|
||
|
`AVERAGEA` differs from `AVERAGE` in its treatment of string and Boolean values:
|
||
|
string values are treated as zeroes and Boolean values map to their coerced
|
||
|
numeric equivalent (`true` is `1` and `false` is `0`).
|
||
|
|
||
|
:::
|
||
|
|
||
|
:::note JavaScript Ecosystem
|
||
|
|
||
|
Some JavaScript libraries implement functions for computing array means.
|
||
|
|
||
|
| Library | Implementation |
|
||
|
|:------------------------|:----------------------------------------------|
|
||
|
| `jStat`[^8] | Textbook sum (divide at end) |
|
||
|
| `simple-statistics`[^9] | Neumaier compensated sum (divide at end) |
|
||
|
| `stdlib.js`[^10] | Trial mean (`mean`) / van Reeken (`incrmean`) |
|
||
|
|
||
|
:::
|
||
|
|
||
|
### Textbook Sum
|
||
|
|
||
|
The mean of a sequence of values can be calculated by computing the sum and
|
||
|
dividing by the count.
|
||
|
|
||
|
<Tabs groupId="style">
|
||
|
<TabItem name="aoo" value="Array of Objects">
|
||
|
|
||
|
The following function accepts an array of objects and a key.
|
||
|
|
||
|
```js
|
||
|
function aoa_average_of_key(aoo, key) {
|
||
|
let sum = 0, cnt = 0;
|
||
|
for(let R = 0; R < aoo.length; ++R) {
|
||
|
const row = aoo[R];
|
||
|
if(typeof row == "undefined") continue;
|
||
|
|
||
|
const field = row[key];
|
||
|
if(typeof field != "number") continue;
|
||
|
|
||
|
sum += field; ++cnt;
|
||
|
}
|
||
|
return cnt == 0 ? 0 : sum / cnt;
|
||
|
}
|
||
|
```
|
||
|
|
||
|
<details><summary><b>Live Demo</b> (click to show)</summary>
|
||
|
|
||
|
```jsx live
|
||
|
function SheetJSAoOAverageKey() {
|
||
|
const [avg, setAvg] = React.useState(NaN);
|
||
|
|
||
|
function aoa_average_of_key(aoo, key) {
|
||
|
let sum = 0, cnt = 0;
|
||
|
for(let R = 0; R < aoo.length; ++R) {
|
||
|
const row = aoo[R];
|
||
|
if(typeof row == "undefined") continue;
|
||
|
|
||
|
const field = row[key];
|
||
|
if(typeof field != "number") continue;
|
||
|
|
||
|
sum += field; ++cnt;
|
||
|
}
|
||
|
return cnt == 0 ? 0 : sum / cnt;
|
||
|
}
|
||
|
|
||
|
React.useEffect(() => { (async() => {
|
||
|
const ab = await (await fetch("/typedarray/iris.xlsx")).arrayBuffer();
|
||
|
const wb = XLSX.read(ab, {dense: true});
|
||
|
const aoo = XLSX.utils.sheet_to_json(wb.Sheets[wb.SheetNames[0]]);
|
||
|
setAvg(aoa_average_of_key(aoo, "sepal length"));
|
||
|
})(); }, []);
|
||
|
|
||
|
return ( <b>The average Sepal Length is {avg}</b> );
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</details>
|
||
|
|
||
|
</TabItem>
|
||
|
<TabItem name="ws" value="Dense Worksheet">
|
||
|
|
||
|
The following function accepts a SheetJS worksheet and a column index.
|
||
|
|
||
|
```js
|
||
|
function ws_average_of_col(ws, C) {
|
||
|
const data = ws["!data"];
|
||
|
let sum = 0, cnt = 0;
|
||
|
for(let R = 1; R < data.length; ++R) {
|
||
|
const row = data[R];
|
||
|
if(typeof row == "undefined") continue;
|
||
|
|
||
|
const field = row[C];
|
||
|
if(!field || field.t != "n") continue;
|
||
|
|
||
|
sum += field.v; ++cnt;
|
||
|
}
|
||
|
return cnt == 0 ? 0 : sum / cnt;
|
||
|
}
|
||
|
```
|
||
|
|
||
|
<details><summary><b>Live Demo</b> (click to show)</summary>
|
||
|
|
||
|
```jsx live
|
||
|
function SheetJSDenseAverageKey() {
|
||
|
const [avg, setAvg] = React.useState(NaN);
|
||
|
|
||
|
function ws_average_of_col(ws, C) {
|
||
|
const data = ws["!data"];
|
||
|
let sum = 0, cnt = 0;
|
||
|
for(let R = 1; R < data.length; ++R) {
|
||
|
const row = data[R];
|
||
|
if(typeof row == "undefined") continue;
|
||
|
|
||
|
const field = row[C];
|
||
|
if(!field || field.t != "n") continue;
|
||
|
|
||
|
sum += field.v; ++cnt;
|
||
|
}
|
||
|
return cnt == 0 ? 0 : sum / cnt;
|
||
|
}
|
||
|
|
||
|
React.useEffect(() => { (async() => {
|
||
|
const ab = await (await fetch("/typedarray/iris.xlsx")).arrayBuffer();
|
||
|
const wb = XLSX.read(ab, {dense: true});
|
||
|
const ws = wb.Sheets[wb.SheetNames[0]];
|
||
|
|
||
|
/* find column index */
|
||
|
const first_row = ws["!data"][0];
|
||
|
let C = -1;
|
||
|
for(let i = 0; i < first_row.length; ++i) {
|
||
|
let cell = first_row[i];
|
||
|
/* confirm cell exists */
|
||
|
if(!cell) continue;
|
||
|
/* confirm cell is a text cell */
|
||
|
if(cell.t != "s") continue;
|
||
|
/* compare the text */
|
||
|
if(cell.v.localeCompare("sepal length") != 0) continue;
|
||
|
/* save column index */
|
||
|
C = i; break;
|
||
|
}
|
||
|
|
||
|
setAvg(ws_average_of_col(ws, C));
|
||
|
})(); }, []);
|
||
|
|
||
|
return ( <b>The average Sepal Length is {avg}</b> );
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</details>
|
||
|
|
||
|
</TabItem>
|
||
|
</Tabs>
|
||
|
|
||
|
:::caution pass
|
||
|
|
||
|
The textbook method suffers from numerical issues when many values of similar
|
||
|
magnitude are summed. As the number of elements grows, the absolute value of the
|
||
|
sum grows to orders of magnitude larger than the absolute values of the
|
||
|
individual values and significant figures are lost.
|
||
|
|
||
|
:::
|
||
|
|
||
|
### van Reeken
|
||
|
|
||
|
Some of the issues in the textbook approach can be addressed with a differential
|
||
|
technique. Instead of computing the whole sum, it is possible to calculate and
|
||
|
update an estimate for the mean.
|
||
|
|
||
|
The van Reeken array mean can be implemented in one line of JavaScript code:
|
||
|
|
||
|
```js
|
||
|
for(var n = 1, mean = 0; n <= x.length; ++n) mean += (x[n-1] - mean)/n;
|
||
|
```
|
||
|
|
||
|
<details><summary><b>Math details</b> (click to show)</summary>
|
||
|
|
||
|
Let $M[x;m] = \frac{1}{m}\sum_{i=1}^{m}x_m$ be the mean of the first $m$ elements. Then:
|
||
|
|
||
|
<table style={bs}><tbody style={bs}><tr style={bs}><td style={bs}>
|
||
|
|
||
|
$M[x;m+1]$
|
||
|
|
||
|
</td><td style={bs}>
|
||
|
|
||
|
$= \frac{1}{m+1}\sum_{i=1}^{m+1} x_i$
|
||
|
|
||
|
</td></tr><tr style={bs}><td style={bs}> </td><td style={bs}>
|
||
|
|
||
|
$= \frac{1}{m+1}\sum_{i=1}^{m} x_i + \frac{x_{m+1}}{m+1}$
|
||
|
|
||
|
</td></tr><tr style={bs}><td style={bs}> </td><td style={bs}>
|
||
|
|
||
|
$= \frac{m}{m+1}(\frac{1}{m}\sum_{i=1}^{m} x_i) + \frac{x_{m+1}}{m+1}$
|
||
|
|
||
|
</td></tr><tr style={bs}><td style={bs}> </td><td style={bs}>
|
||
|
|
||
|
$= \frac{m}{m+1}M[x;m] + \frac{x_{m+1}}{m+1}$
|
||
|
|
||
|
</td></tr><tr style={bs}><td style={bs}> </td><td style={bs}>
|
||
|
|
||
|
$= (1 - \frac{1}{m+1})M[x;m] + \frac{x_{m+1}}{m+1}$
|
||
|
|
||
|
</td></tr><tr style={bs}><td style={bs}> </td><td style={bs}>
|
||
|
|
||
|
$= M[x;m] + \frac{x_{m+1}}{m+1} - \frac{1}{m+1}M[x;m]$
|
||
|
|
||
|
</td></tr><tr style={bs}><td style={bs}> </td><td style={bs}>
|
||
|
|
||
|
$= M[x;m] + \frac{1}{m+1}(x_{m+1}-M[x;m])$
|
||
|
|
||
|
</td></tr><tr style={bs}><td style={bs}>
|
||
|
|
||
|
$new\_mean$
|
||
|
|
||
|
</td><td style={bs}>
|
||
|
|
||
|
$= old\_mean + (x_{m+1}-old\_mean) / (m+1)$
|
||
|
|
||
|
</td></tr></tbody></table>
|
||
|
|
||
|
Switching to zero-based indexing, the relation matches the following expression:
|
||
|
|
||
|
```js
|
||
|
new_mean = old_mean + (x[m] - old_mean) / (m + 1);
|
||
|
```
|
||
|
|
||
|
This update can be succinctly implemented in JavaScript:
|
||
|
|
||
|
```js
|
||
|
mean += (x[m] - mean) / (m + 1);
|
||
|
```
|
||
|
|
||
|
</details>
|
||
|
|
||
|
<Tabs groupId="style">
|
||
|
<TabItem name="aoo" value="Array of Objects">
|
||
|
|
||
|
The following function accepts an array of objects and a key.
|
||
|
|
||
|
```js
|
||
|
function aoa_mean_of_key(aoo, key) {
|
||
|
let mean = 0, cnt = 0;
|
||
|
for(let R = 0; R < aoo.length; ++R) {
|
||
|
const row = aoo[R];
|
||
|
if(typeof row == "undefined") continue;
|
||
|
|
||
|
const field = row[key];
|
||
|
if(typeof field != "number") continue;
|
||
|
|
||
|
mean += (field - mean) / ++cnt;
|
||
|
}
|
||
|
return cnt == 0 ? 0 : mean;
|
||
|
}
|
||
|
```
|
||
|
|
||
|
<details><summary><b>Live Demo</b> (click to show)</summary>
|
||
|
|
||
|
```jsx live
|
||
|
function SheetJSAoOMeanKey() {
|
||
|
const [avg, setAvg] = React.useState(NaN);
|
||
|
|
||
|
function aoa_mean_of_key(aoo, key) {
|
||
|
let mean = 0, cnt = 0;
|
||
|
for(let R = 0; R < aoo.length; ++R) {
|
||
|
const row = aoo[R];
|
||
|
if(typeof row == "undefined") continue;
|
||
|
|
||
|
const field = row[key];
|
||
|
if(typeof field != "number") continue;
|
||
|
|
||
|
mean += (field - mean) / ++cnt;
|
||
|
}
|
||
|
return cnt == 0 ? 0 : mean;
|
||
|
}
|
||
|
|
||
|
React.useEffect(() => { (async() => {
|
||
|
const ab = await (await fetch("/typedarray/iris.xlsx")).arrayBuffer();
|
||
|
const wb = XLSX.read(ab, {dense: true});
|
||
|
const aoo = XLSX.utils.sheet_to_json(wb.Sheets[wb.SheetNames[0]]);
|
||
|
setAvg(aoa_mean_of_key(aoo, "sepal length"));
|
||
|
})(); }, []);
|
||
|
|
||
|
return ( <b>The average Sepal Length is {avg}</b> );
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</details>
|
||
|
|
||
|
</TabItem>
|
||
|
<TabItem name="ws" value="Dense Worksheet">
|
||
|
|
||
|
The following function accepts a SheetJS worksheet and a column index.
|
||
|
|
||
|
```js
|
||
|
function ws_mean_of_col(ws, C) {
|
||
|
const data = ws["!data"];
|
||
|
let mean = 0, cnt = 0;
|
||
|
for(let R = 1; R < data.length; ++R) {
|
||
|
const row = data[R];
|
||
|
if(typeof row == "undefined") continue;
|
||
|
|
||
|
const field = row[C];
|
||
|
if(!field || field.t != "n") continue;
|
||
|
|
||
|
mean += (field.v - mean) / ++cnt;
|
||
|
}
|
||
|
return cnt == 0 ? 0 : mean;
|
||
|
}
|
||
|
```
|
||
|
|
||
|
<details><summary><b>Live Demo</b> (click to show)</summary>
|
||
|
|
||
|
```jsx live
|
||
|
function SheetJSDenseMeanKey() {
|
||
|
const [avg, setAvg] = React.useState(NaN);
|
||
|
|
||
|
function ws_mean_of_col(ws, C) {
|
||
|
const data = ws["!data"];
|
||
|
let mean = 0, cnt = 0;
|
||
|
for(let R = 1; R < data.length; ++R) {
|
||
|
const row = data[R];
|
||
|
if(typeof row == "undefined") continue;
|
||
|
|
||
|
const field = row[C];
|
||
|
if(!field || field.t != "n") continue;
|
||
|
|
||
|
mean += (field.v - mean) / ++cnt;
|
||
|
}
|
||
|
return cnt == 0 ? 0 : mean;
|
||
|
}
|
||
|
|
||
|
React.useEffect(() => { (async() => {
|
||
|
const ab = await (await fetch("/typedarray/iris.xlsx")).arrayBuffer();
|
||
|
const wb = XLSX.read(ab, {dense: true});
|
||
|
const ws = wb.Sheets[wb.SheetNames[0]];
|
||
|
|
||
|
/* find column index */
|
||
|
const first_row = ws["!data"][0];
|
||
|
let C = -1;
|
||
|
for(let i = 0; i < first_row.length; ++i) {
|
||
|
let cell = first_row[i];
|
||
|
/* confirm cell exists */
|
||
|
if(!cell) continue;
|
||
|
/* confirm cell is a text cell */
|
||
|
if(cell.t != "s") continue;
|
||
|
/* compare the text */
|
||
|
if(cell.v.localeCompare("sepal length") != 0) continue;
|
||
|
/* save column index */
|
||
|
C = i; break;
|
||
|
}
|
||
|
|
||
|
setAvg(ws_mean_of_col(ws, C));
|
||
|
})(); }, []);
|
||
|
|
||
|
return ( <b>The average Sepal Length is {avg}</b> );
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</details>
|
||
|
|
||
|
</TabItem>
|
||
|
</Tabs>
|
||
|
|
||
|
:::note Historical Context
|
||
|
|
||
|
This algorithm is generally attributed to Welford[^11]. However, the original
|
||
|
paper does not propose this algorithm for calculating the mean!
|
||
|
|
||
|
Programmers including Neely[^12] attributed a different algorithm to Welford.
|
||
|
van Reeken[^13] reported success with the algorithm presented in this section.
|
||
|
|
||
|
Knuth[^14] erroneously attributed this implementation of the mean to Welford.
|
||
|
|
||
|
:::
|
||
|
|
||
|
[^1]: See [`sheet_to_json` in "Utilities"](/docs/api/utilities/array#array-output)
|
||
|
[^2]: See ["Dense Mode" in "Utilities"](/docs/csf/sheet#dense-mode)
|
||
|
[^3]: See [`read` in "Reading Files"](/docs/api/parse-options)
|
||
|
[^4]: See ["Dense Mode" in "Utilities"](/docs/csf/sheet#dense-mode)
|
||
|
[^5]: See ["Cell Types" in "Cell Objects"](/docs/csf/cell#cell-types)
|
||
|
[^6]: See ["Underlying Values" in "Cell Objects"](/docs/csf/cell#underlying-values)
|
||
|
[^7]: See ["Cell Types" in "Cell Objects"](/docs/csf/cell#cell-types)
|
||
|
[^8]: See [`mean()`](https://jstat.github.io/all.html#mean) in the `jStat` documentation.
|
||
|
[^9]: See [`mean`](http://simple-statistics.github.io/docs/#mean) in the `simple-statistics` documentation.
|
||
|
[^10]: See [`incrsum`](https://stdlib.io/docs/api/latest/@stdlib/stats/incr/sum) in the `stdlib.js` documentation.
|
||
|
[^11]: See "Note on a Method for Calculated Corrected Sums of Squares and Products" in Technometrics Vol 4 No 3 (1962 August).
|
||
|
[^12]: See "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients" in CACM Vol 9 No 7 (1966 July).
|
||
|
[^13]: See "Dealing with Neely's Algorithms" in CACM Vol 11 No 3 (1968 March).
|
||
|
[^14]: See "The Art of Computer Programming: Seminumerical Algorithms" Third Edition page 232.
|