2024-01-03 06:47:00 +00:00
---
title: Sheets in TensorFlow
sidebar_label: TensorFlow.js
pagination_prev: demos/index
pagination_next: demos/frontend/index
---
< head >
< script src = "https://docs.sheetjs.com/tfjs/tf.min.js" > < / script >
< / head >
[TensorFlow.js ](https://www.tensorflow.org/js ) (shortened to TF.js) is a library
for machine learning in JavaScript.
[SheetJS ](https://sheetjs.com ) is a JavaScript library for reading and writing
data from spreadsheets.
This demo uses TensorFlow.js and SheetJS to process data in spreadsheets. We'll
explore how to load spreadsheet data into TF.js datasets and how to export
results back to spreadsheets.
- ["CSV Data Interchange" ](#csv-data-interchange ) uses SheetJS to process sheets
and generate CSV data that TF.js can import.
2024-04-12 01:04:37 +00:00
- ["JS Array Interchange" ](#js-array-interchange ) uses SheetJS to process sheets
and generate rows of objects that can be post-processed.
2024-01-03 06:47:00 +00:00
:::info pass
Live code blocks in this page use the TF.js `4.14.0` standalone build.
For use in web frameworks, the `@tensorflow/tfjs` module should be used.
For use in NodeJS, the native bindings module is `@tensorflow/tfjs-node` .
:::
:::note Tested Deployments
Each browser demo was tested in the following environments:
| Browser | TF.js version | Date |
|:------------|:--------------|:-----------|
2024-04-08 03:55:10 +00:00
| Chrome 122 | `4.14.0` | 2024-04-07 |
2024-03-24 08:06:44 +00:00
| Safari 17.4 | `4.14.0` | 2024-03-23 |
2024-01-03 06:47:00 +00:00
:::
## CSV Data Interchange
`tf.data.csv` [^1] generates a Dataset from CSV data. The function expects a URL.
:::note pass
When this demo was last tested, there was no direct method to pass a CSV string
to the underlying parser.
:::
Fortunately blob URLs are supported.
```mermaid
flowchart LR
ws((SheetJS\nWorksheet))
csv(CSV\nstring)
url{{Data\nURL}}
dataset[(TF.js\nDataset)]
ws --> |sheet_to_csv\nSheetJS| csv
csv --> |JavaScript\nAPIs| url
url --> |tf.data.csv\nTensorFlow.js| dataset
```
The SheetJS `sheet_to_csv` method[^2] generates a CSV string from a worksheet
object. Using standard JavaScript techniques, a blob URL can be constructed:
```js
function worksheet_to_csv_url(worksheet) {
/* generate CSV */
const csv = XLSX.utils.sheet_to_csv(worksheet);
/* CSV -> Uint8Array -> Blob */
const u8 = new TextEncoder().encode(csv);
const blob = new Blob([u8], { type: "text/csv" });
/* generate a blob URL */
return URL.createObjectURL(blob);
}
```
### CSV Demo
This demo shows a simple model fitting using the "cars" dataset from TensorFlow.
The [sample XLS file ](https://sheetjs.com/data/cd.xls ) contains the data. The
data processing mirrors the official "Making Predictions from 2D Data" demo[^3].
```mermaid
flowchart LR
file[(Remote\nFile)]
subgraph SheetJS Operations
ab[(Data\nBytes)]
wb(((SheetJS\nWorkbook)))
ws((SheetJS\nWorksheet))
csv(CSV\nstring)
end
subgraph TensorFlow.js Operations
url{{Data\nURL}}
dataset[(TF.js\nDataset)]
results((Results))
end
file --> |fetch\n\n| ab
ab --> |read\n\n| wb
wb --> |select\nsheet| ws
ws --> |sheet_to_csv\n\n| csv
csv --> |JS\nAPI| url
url --> |tf.data.csv\nTF.js| dataset
dataset --> |fitDataset\nTF.js| results
```
The demo builds a model for predicting MPG from Horsepower data. It:
2024-04-08 04:47:04 +00:00
- fetches https://sheetjs.com/data/cd.xls
2024-01-03 06:47:00 +00:00
- parses the data with the SheetJS `read` [^4] method
- selects the first worksheet[^5] and converts to CSV using `sheet_to_csv` [^6]
- generates a blob URL from the CSV text
- generates a TF.js dataset with `tf.data.csv` [^7] and selects data columns
- builds a model and trains with `fitDataset` [^8]
- predicts MPG from a set of sample inputs and displays results in a table
2024-04-08 04:47:04 +00:00
< details >
< summary > < b > Live Demo< / b > (click to show)< / summary >
2024-01-03 06:47:00 +00:00
:::caution pass
In some test runs, the results did not make sense given the underlying data.
The dependent and independent variables are expected to be anti-correlated.
**This is a known issue in TF.js and affects the official demos**
:::
:::caution pass
If the live demo shows a message
```
ReferenceError: tf is not defined
```
please refresh the page. This is a known bug in the documentation generator.
:::
```jsx live
function SheetJSToTFJSCSV() {
const [output, setOutput] = React.useState("");
const [results, setResults] = React.useState([]);
const [disabled, setDisabled] = React.useState(false);
function worksheet_to_csv_url(worksheet) {
/* generate CSV */
const csv = XLSX.utils.sheet_to_csv(worksheet);
/* CSV -> Uint8Array -> Blob */
const u8 = new TextEncoder().encode(csv);
const blob = new Blob([u8], { type: "text/csv" });
/* generate a blob URL */
return URL.createObjectURL(blob);
}
const doit = React.useCallback(async () => {
setResults([]); setOutput(""); setDisabled(true);
try {
/* fetch file */
const f = await fetch("https://sheetjs.com/data/cd.xls");
const ab = await f.arrayBuffer();
/* parse file and get first worksheet */
const wb = XLSX.read(ab);
const ws = wb.Sheets[wb.SheetNames[0]];
/* generate blob URL */
const url = worksheet_to_csv_url(ws);
/* feed to tf.js */
const dataset = tf.data.csv(url, {
hasHeader: true,
configuredColumnsOnly: true,
columnConfigs:{
"Horsepower": {required: false, default: 0},
"Miles_per_Gallon":{required: false, default: 0, isLabel:true}
}
});
/* pre-process data */
let flat = dataset
.map(({xs,ys}) =>({xs: Object.values(xs), ys: Object.values(ys)}))
.filter(({xs,ys}) => [...xs,...ys].every(v => v>0));
/* normalize manually :( */
let minX = Infinity, maxX = -Infinity, minY = Infinity, maxY = -Infinity;
await flat.forEachAsync(({xs, ys}) => {
minX = Math.min(minX, xs[0]); maxX = Math.max(maxX, xs[0]);
minY = Math.min(minY, ys[0]); maxY = Math.max(maxY, ys[0]);
});
flat = flat.map(({xs, ys}) => ({xs:xs.map(v => (v-minX)/(maxX - minX)),ys:ys.map(v => (v-minY)/(maxY-minY))}));
flat = flat.batch(32);
/* build and train model */
const model = tf.sequential();
model.add(tf.layers.dense({inputShape: [1], units: 1}));
model.compile({ optimizer: tf.train.sgd(0.000001), loss: 'meanSquaredError' });
await model.fitDataset(flat, { epochs: 100, callbacks: { onEpochEnd: async (epoch, logs) => {
setOutput(`${epoch}:${logs.loss}`);
}}});
/* predict values */
const inp = tf.linspace(0, 1, 9);
const pred = model.predict(inp);
const xs = await inp.dataSync(), ys = await pred.dataSync();
setResults(Array.from(xs).map((x, i) => [ x * (maxX - minX) + minX, ys[i] * (maxY - minY) + minY ]));
setOutput("");
} catch(e) { setOutput(`ERROR: ${String(e)}`); } finally { setDisabled(false);}
});
return ( < >
< button onClick = {doit} disabled = {disabled} > Click to run< / button > < br / >
{output & & < pre > {output}< / pre > || < >< />}
{results.length & & < table > < thead > < tr > < th > Horsepower< / th > < th > MPG< / th > < / tr > < / thead > < tbody >
{results.map((r,i) => < tr key = {i} > < td > {r[0]}< / td > < td > {r[1].toFixed(2)}< / td > < / tr > )}
< / tbody > < / table > || < >< />}
< /> );
}
```
< / details >
## JS Array Interchange
[The official Linear Regression tutorial ](https://www.tensorflow.org/js/tutorials/training/linear_regression )
loads data from a JSON file:
```json
[
{
"Name": "chevrolet chevelle malibu",
"Miles_per_Gallon": 18,
"Cylinders": 8,
"Displacement": 307,
"Horsepower": 130,
"Weight_in_lbs": 3504,
"Acceleration": 12,
"Year": "1970-01-01",
"Origin": "USA"
},
// ...
]
```
In real use cases, data is stored in [spreadsheets ](https://sheetjs.com/data/cd.xls )
![cd.xls screenshot ](pathname:///files/cd.png )
Following the tutorial, the data fetching method can be adapted to handle arrays
of objects, such as those generated by the SheetJS `sheet_to_json` method[^9].
Differences from the official example are highlighted below:
```js
/**
* Get the car data reduced to just the variables we are interested
* and cleaned of missing data.
*/
async function getData() {
// highlight-start
/* fetch file */
const carsDataResponse = await fetch('https://sheetjs.com/data/cd.xls');
/* get file data (ArrayBuffer) */
const carsDataAB = await carsDataResponse.arrayBuffer();
/* parse */
const carsDataWB = XLSX.read(carsDataAB);
/* get first worksheet */
const carsDataWS = carsDataWB.Sheets[carsDataWB.SheetNames[0]];
/* generate array of JS objects */
const carsData = XLSX.utils.sheet_to_json(carsDataWS);
// highlight-end
const cleaned = carsData.map(car => ({
mpg: car.Miles_per_Gallon,
horsepower: car.Horsepower,
}))
.filter(car => (car.mpg != null & & car.horsepower != null));
return cleaned;
}
```
## Low-Level Operations
### Data Transposition
A typical dataset in a spreadsheet will start with one header row and represent
each data record in its own row. For example, the Iris dataset might look like
![Iris dataset ](pathname:///files/iris.png )
The SheetJS `sheet_to_json` method[^10] will translate worksheet objects into an
array of row objects:
```js
var aoo = [
{"sepal length": 5.1, "sepal width": 3.5, ...},
{"sepal length": 4.9, "sepal width": 3, ...},
...
];
```
TF.js and other libraries tend to operate on individual columns, equivalent to:
```js
var sepal_lengths = [5.1, 4.9, ...];
var sepal_widths = [3.5, 3, ...];
```
When a `tensor2d` can be exported, it will look different from the spreadsheet:
```js
var data_set_2d = [
[5.1, 4.9, ...],
[3.5, 3, ...],
...
]
```
This is the transpose of how people use spreadsheets!
### Exporting Datasets to a Worksheet
The `aoa_to_sheet` method[^11] can generate a worksheet from an array of arrays.
ML libraries typically provide APIs to pull an array of arrays, but it will be
transposed. To export multiple data sets, the data should be transposed:
```js
/* assuming data is an array of typed arrays */
var aoa = [];
for(var i = 0; i < data.length ; + + i ) {
for(var j = 0; j < data [ i ] . length ; + + j ) {
if(!aoa[j]) aoa[j] = [];
aoa[j][i] = data[i][j];
}
}
/* aoa can be directly converted to a worksheet object */
var ws = XLSX.utils.aoa_to_sheet(aoa);
```
### Importing Data from a Spreadsheet
`sheet_to_json` with the option `header:1` [^12] will generate a row-major array
of arrays that can be transposed. However, it is more efficient to walk the
sheet manually:
```js
/* find worksheet range */
var range = XLSX.utils.decode_range(ws['!ref']);
var out = []
/* walk the columns */
for(var C = range.s.c; C < = range.e.c; ++C) {
/* create the typed array */
var ta = new Float32Array(range.e.r - range.s.r + 1);
/* walk the rows */
for(var R = range.s.r; R < = range.e.r; ++R) {
/* find the cell, skip it if the cell isn't numeric or boolean */
var cell = ws["!data"] ? (ws["!data"][R]||[])[C] : ws[XLSX.utils.encode_cell({r:R, c:C})];
if(!cell || cell.t != 'n' & & cell.t != 'b') continue;
/* assign to the typed array */
ta[R - range.s.r] = cell.v;
}
out.push(ta);
}
```
If the data set has a header row, the loop can be adjusted to skip those rows.
### TF.js Tensors
A single `Array#map` can pull individual named fields from the result, which
can be used to construct TensorFlow.js tensor objects:
```js
const aoo = XLSX.utils.sheet_to_json(worksheet);
const lengths = aoo.map(row => row["sepal length"]);
const tensor = tf.tensor1d(lengths);
```
`tf.Tensor` objects can be directly transposed using `transpose` :
```js
var aoo = XLSX.utils.sheet_to_json(worksheet);
// "x" and "y" are the fields we want to pull from the data
var data = aoo.map(row => ([row["x"], row["y"]]));
// create a tensor representing two column datasets
var tensor = tf.tensor2d(data).transpose();
// individual columns can be accessed
var col1 = tensor.slice([0,0], [1,tensor.shape[1]]).flatten();
var col2 = tensor.slice([1,0], [1,tensor.shape[1]]).flatten();
```
For exporting, `stack` can be used to collapse the columns into a linear array:
```js
/* pull data into a Float32Array */
var result = tf.stack([col1, col2]).transpose();
var shape = tensor.shape;
var f32 = tensor.dataSync();
/* construct an array of arrays of the data in spreadsheet order */
var aoa = [];
for(var j = 0; j < shape [ 0 ] ; + + j ) {
aoa[j] = [];
for(var i = 0; i < shape [ 1 ] ; + + i ) aoa [ j ] [ i ] = f32 [ j * shape [ 1 ] + i ] ;
}
/* add headers to the top */
aoa.unshift(["x", "y"]);
/* generate worksheet */
var worksheet = XLSX.utils.aoa_to_sheet(aoa);
```
[^1]: See [`tf.data.csv` ](https://js.tensorflow.org/api/latest/#data.csv ) in the TensorFlow.js documentation
[^2]: See [`sheet_to_csv` in "CSV and Text" ](/docs/api/utilities/csv#delimiter-separated-output )
[^3]: The ["Making Predictions from 2D Data" example ](https://codelabs.developers.google.com/codelabs/tfjs-training-regression/ ) uses a hosted JSON file. The [sample XLS file ](https://sheetjs.com/data/cd.xls ) includes the same data.
[^4]: See [`read` in "Reading Files" ](/docs/api/parse-options )
[^5]: See ["Workbook Object" ](/docs/csf/book )
[^6]: See [`sheet_to_csv` in "CSV and Text" ](/docs/api/utilities/csv#delimiter-separated-output )
[^7]: See [`tf.data.csv` ](https://js.tensorflow.org/api/latest/#data.csv ) in the TensorFlow.js documentation
[^8]: See [`tf.LayersModel.fitDataset` ](https://js.tensorflow.org/api/latest/#tf.LayersModel.fitDataset ) in the TensorFlow.js documentation
[^9]: See [`sheet_to_json` in "Utilities" ](/docs/api/utilities/array#array-output )
[^10]: See [`sheet_to_json` in "Utilities" ](/docs/api/utilities/array#array-output )
[^11]: See [`aoa_to_sheet` in "Utilities" ](/docs/api/utilities/array#array-of-arrays-input )
[^12]: See [`sheet_to_json` in "Utilities" ](/docs/api/utilities/array#array-output )