2024-01-30 09:27:22 +00:00
---
2024-01-31 08:14:07 +00:00
title: Spreadsheet Data in Python
sidebar_label: Python DataFrames
description: Process structured data in Python DataFrames. Seamlessly integrate spreadsheets into your workflow with SheetJS. Analyze complex Excel spreadsheets with confidence.
2024-01-30 09:27:22 +00:00
pagination_prev: demos/index
pagination_next: demos/frontend/index
---
import current from '/version.js';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import CodeBlock from '@theme/CodeBlock';
2024-01-31 08:14:07 +00:00
[Pandas ](https://pandas.pydata.org/ ) is a Python library for data analysis.
2024-01-30 09:27:22 +00:00
[SheetJS ](https://sheetjs.com ) is a JavaScript library for reading and writing
data from spreadsheets.
This demo uses SheetJS to process data from a spreadsheet and translate to the
Pandas DataFrame format. We'll explore how to load SheetJS from Python scripts,
generate DataFrames from workbooks, and write DataFrames back to workbooks.
The ["Complete Example" ](#complete-example ) includes a wrapper library that
simplifies importing and exporting spreadsheets.
:::info pass
Pandas includes limited support for reading spreadsheets (`pandas.from_excel`)
and writing XLSX spreadsheets (`pandas.DataFrame.to_excel`).
2024-01-31 08:14:07 +00:00
**SheetJS supports many common spreadsheet formats that Pandas cannot process.**
2024-01-30 09:27:22 +00:00
SheetJS operations also offer more flexibility in processing complex worksheets.
:::
:::note Tested Environments
This demo was tested in the following deployments:
| Architecture | JS Engine | Pandas | Python | Date |
|:-------------|:----------------|:-------|:-------|:-----------|
2024-03-16 16:04:18 +00:00
| `darwin-x64` | Duktape `2.7.0` | 2.2.1 | 3.12.2 | 2024-03-15 |
2024-03-12 06:47:52 +00:00
| `darwin-arm` | Duktape `2.7.0` | 2.0.3 | 3.11.7 | 2024-02-13 |
2024-01-30 09:27:22 +00:00
| `linux-x64` | Duktape `2.7.0` | 1.5.3 | 3.11.3 | 2024-01-29 |
:::
## Integration Details
[`sheetjs.py` ](pathname:///pandas/sheetjs.py ) is a wrapper script that provides
helper methods for reading and writing spreadsheets. Installation notes are
included in the ["Complete Example" ](#complete-example ) section.
### JS in Python
JS code cannot be directly evaluated in Python implementations.
2024-01-31 08:14:07 +00:00
To run JS code from Python, JavaScript engines[^1] can be embedded in Python
modules or dynamically loaded using the `ctypes` foreign function library[^2].
2024-01-30 09:27:22 +00:00
This demo uses `ctypes` with the [Duktape engine ](/docs/demos/engines/duktape ).
### Wrapper
The script exports a class named `SheetJSWrapper` . It is a context manager that
initializes the Duktape engine and executes SheetJS scripts on entrance. All
work should be performed in the context:
```python title="Complete Example"
#!/usr/bin/env python3
from sheetjs import SheetJSWrapper
with SheetJSWrapper() as sheetjs:
# Parse file
wb = sheetjs.read_file("pres.numbers")
print("Loaded file pres.numbers")
# Get first worksheet name
first_ws_name = wb.get_sheet_names()[0]
print(f"Reading from sheet {first_ws_name}")
# Generate DataFrame from first worksheet
df = wb.get_df(first_ws_name)
print(df.info())
# Export DataFrame to XLSB
sheetjs.write_df(df, "SheetJSPandas.xlsb", sheet_name="DataFrame")
```
### Reading Files
`sheetjs.read_file` accepts a path to a spreadsheet file. It will parse the file
and return an object representing the workbook.
The `get_sheet_names` method of the workbook returns a list of sheet names.
The `get_df` method of the workbook generates a DataFrame from the workbook. The
specific sheet can be selected by passing the name.
For example, the following code reads `pres.numbers` and generates a DataFrame
from the second worksheet:
```python title="Generating a DataFrame from the second worksheet"
with SheetJSWrapper() as sheetjs:
# Parse file
wb = sheetjs.read_file(path)
# Generate DataFrame from second worksheet
ws_name = wb.get_sheet_names()[1]
df = wb.get_df(ws_name)
# Print metadata
print(df.info())
```
Under the hood, `sheetjs.py` performs the following steps:
```mermaid
flowchart LR
file[(workbook\nfile)]
subgraph SheetJS operations
bytes(Byte\nstring)
wb((SheetJS\nWorkbook))
csv(CSV\nstring)
end
subgraph Pandas operations
stream(CSV\nStream)
df[(Pandas\nDataFrame)]
end
file --> |`open`/`read`\nPython ops| bytes
bytes --> |`XLSX.read`\nParse Bytes| wb
wb --> |`sheet_to_csv`\nExtract Data| csv
csv --> |`StringIO`\nPython ops| stream
stream --> |`read_csv`\nParse CSV| df
```
1) Pure Python operations read the spreadsheet file and generate a byte string.
2) SheetJS libraries parse the string and generate a clean CSV.
2024-01-31 08:14:07 +00:00
- The `read` method[^3] parses file bytes into a SheetJS workbook object[^4]
- After selecting a worksheet, `sheet_to_csv` [^5] generates a CSV string
2024-01-30 09:27:22 +00:00
2024-01-31 08:14:07 +00:00
3) Python operations convert the CSV string to a stream object.[^6]
2024-01-30 09:27:22 +00:00
2024-01-31 08:14:07 +00:00
4) The Pandas `read_csv` method[^7] ingests the stream and generate a DataFrame.
2024-01-30 09:27:22 +00:00
### Writing Files
`sheetjs.write_df` accepts a DataFrame and a path. It will attempt to export
the data to a spreadsheet file.
For example, the following code exports a DataFrame to `SheetJSPandas.xlsb` :
```python title="Exporting a DataFrame to XLSB"
with SheetJSWrapper() as sheetjs:
# Export DataFrame to XLSB
sheetjs.write_df(df, "SheetJSPandas.xlsb", sheet_name="DataFrame")
```
Under the hood, `sheetjs.py` performs the following steps:
```mermaid
flowchart LR
subgraph Pandas operations
df[(Pandas\nDataFrame)]
json(JSON\nString)
end
subgraph SheetJS operations
aoo(array of\nobjects)
wb((SheetJS\nWorkbook))
u8a(File\nbytes)
end
file[(workbook\nfile)]
df --> |`to_json`\nPandas ops| json
json --> |`JSON.parse`\nJS Engine| aoo
aoo --> |`json_to_sheet`\nSheetJS Ops| wb
wb --> |`XLSX.write`\nUint8Array| u8a
u8a --> |`open`/`write`\nPython ops| file
```
2024-01-31 08:14:07 +00:00
1) The Pandas DataFrame `to_json` method[^8] generates a JSON string.
2024-01-30 09:27:22 +00:00
2) JS engine operations translate the JSON string to an array of objects.
3) SheetJS libraries process the data array and generate file bytes.
2024-01-31 08:14:07 +00:00
- The `json_to_sheet` method[^9] creates a SheetJS sheet object from the data.
- The `book_new` method[^10] creates a SheetJS workbook that includes the sheet.
- The `write` method[^11] generates the spreadsheet file bytes.
2024-01-30 09:27:22 +00:00
4) Pure Python operations write the bytes to file.
## Complete Example
This example will extract data from an Apple Numbers spreadsheet and generate a
DataFrame. The DataFrame will be exported to the binary XLSB spreadsheet format.
0) Install Pandas:
```bash
sudo python3 -m pip install pandas
```
:::caution pass
On Arch Linux-based platforms including the Steam Deck, the install may fail:
```
error: externally-managed-environment
```
In these situations, Pandas must be installed through the package manager:
```bash
sudo pacman -Syu python-pandas
```
:::
2024-03-16 16:04:18 +00:00
:::caution pass
On macOS systems with a Python version from Homebrew, the install will fail:
```
error: externally-managed-environment
```
When the demo was last tested, Homebrew did not have a pre-built Pandas formula.
Instead, Pandas should be installed with the `--break-system-packages` option:
```bash
sudo python3 -m pip install pandas --break-system-packages
```
:::
2024-01-30 09:27:22 +00:00
1) Build the Duktape shared library:
```bash
curl -LO https://duktape.org/duktape-2.7.0.tar.xz
tar -xJf duktape-2.7.0.tar.xz
cd duktape-2.7.0
make -f Makefile.sharedlibrary
cd ..
```
2) Copy the shared library to the current folder. When the demo was last tested,
the shared library file name differed by platform:
| OS | name |
|:-------|:--------------------------|
| Darwin | `libduktape.207.20700.so` |
| Linux | `libduktape.so.207.20700` |
```bash
cp duktape-*/libduktape.* .
```
3) Download the SheetJS Standalone script and move to the project directory:
< ul >
< li > < a href = {`https://cdn.sheetjs.com/xlsx-${current}/package/dist/shim.min.js`} > shim.min.js< / a > < / li >
< li > < a href = {`https://cdn.sheetjs.com/xlsx-${current}/package/dist/xlsx.full.min.js`} > xlsx.full.min.js< / a > < / li >
< / ul >
< CodeBlock language = "bash" > {`\
curl -LO https://cdn.sheetjs.com/xlsx-${current}/package/dist/shim.min.js
curl -LO https://cdn.sheetjs.com/xlsx-${current}/package/dist/xlsx.full.min.js`}
< / CodeBlock >
4) Download the following test scripts and files:
- [`pres.numbers` test file ](https://sheetjs.com/pres.numbers )
- [`sheetjs.py` script ](pathname:///pandas/sheetjs.py )
- [`SheetJSPandas.py` script ](pathname:///pandas/SheetJSPandas.py )
```bash
curl -LO https://sheetjs.com/pres.numbers
curl -LO https://docs.sheetjs.com/pandas/sheetjs.py
curl -LO https://docs.sheetjs.com/pandas/SheetJSPandas.py
```
5) Edit the `sheetjs.py` script.
The `lib` variable declares the path to the library:
```python title="sheetjs.py (edit highlighted line)"
# highlight-next-line
lib = "libduktape.207.20700.so"
```
< Tabs groupId = "triple" >
< TabItem value = "darwin-x64" label = "MacOS" >
The name of the library is `libduktape.207.20700.so` :
```python title="sheetjs.py (change highlighted line)"
# highlight-next-line
lib = "libduktape.207.20700.so"
```
< / TabItem >
< TabItem value = "linux-x64" label = "Linux" >
The name of the library is `libduktape.so.207.20700` :
```python title="sheetjs.py (change highlighted line)"
# highlight-next-line
lib = "libduktape.so.207.20700"
```
< / TabItem >
< / Tabs >
6) Run the script:
```bash
python3 SheetJSPandas.py pres.numbers
```
If successful, the script will display DataFrame metadata:
```
RangeIndex: 5 entries, 0 to 4
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Name 5 non-null object
1 Index 5 non-null int64
dtypes: int64(1), object(1)
```
It will also export the DataFrame to `SheetJSPandas.xlsb` . The file can be
inspected with a spreadsheet editor that supports XLSB files.
2024-01-31 08:14:07 +00:00
## Other Libraries
Other Python DataFrame libraries mirror the Pandas DataFrame API.
### Polars
[Polars ](https://pola.rs/ ) is a similar DataFrame library that offers many
features from Pandas DataFrames.
:::info pass
Polars includes limited support for reading and writing spreadsheets by wrapping
third-party libraries. In practice, Polars communicates with the third-party
libraries using intermediate CSV files.[^12]
**SheetJS supports many common spreadsheet formats that Polars cannot process.**
SheetJS operations also offer more flexibility in processing complex worksheets.
:::
The Pandas example requires a few slight changes to work with Polars:
- Polars DataFrames expose `write_json` instead of `to_json` :
```diff
- json = df.to_json(orient="records")
+ json = df.write_json(row_oriented=True)
```
- Polars DataFrames do not expose `info`
#### Polars Demo
:::note Tested Environments
This demo was tested in the following deployments:
2024-03-16 16:04:18 +00:00
| Architecture | JS Engine | Polars | Python | Date |
|:-------------|:----------------|:--------|:-------|:-----------|
| `darwin-x64` | Duktape `2.7.0` | 0.20.15 | 3.12.2 | 2024-03-15 |
| `darwin-arm` | Duktape `2.7.0` | 0.20.7 | 3.11.7 | 2024-02-13 |
| `linux-x64` | Duktape `2.7.0` | 0.20.6 | 3.11.3 | 2024-01-30 |
2024-01-31 08:14:07 +00:00
:::
0) Follow the [Pandas "Complete Example" ](#complete-example ) through the end.
1) Edit `sheetjs.py` .
Near the top of the script, change the import from `pandas` to `polars` :
```diff title="sheetjs.py (apply changes)"
-from pandas import read_csv
+from polars import read_csv
```
:::note pass
The red lines starting with `-` should be removed from the file and the green
lines starting with `+` should be added to the file. Black lines show the source
context and should not be changed.
:::
Within the `export_df_to_wb` function, change the `df.to_json` line:
```diff title="sheetjs.py (apply changes)"
def export_df_to_wb(ctx, df, path, sheet_name="Sheet1", book_type=None):
- json = df.to_json(orient="records")
+ json = df.write_json(row_oriented=True)
```
2) Edit `SheetJSPandas.py` .
In the script, change `df.info()` to `df` :
```diff title="SheetJSPandas.py (apply changes)"
def export_df_to_wb(ctx, df, path, sheet_name="Sheet1", book_type=None):
- print(df.info())
+ print(df)
```
Change the export filename from `SheetJSPandas.xlsb` to `SheetJSPolars.xlsb` :
```diff
# Export DataFrame to XLSB
- sheetjs.write_df(df, "SheetJSPandas.xlsb", sheet_name="DataFrame")
+ sheetjs.write_df(df, "SheetJSPolars.xlsb", sheet_name="DataFrame")
```
3) Install Polars:
```bash
sudo python3 -m pip install polars
```
:::caution pass
On Arch Linux-based platforms including the Steam Deck, the install may fail:
```
error: externally-managed-environment
```
It is recommended to use a virtual environment for Polars:
```bash
mkdir sheetjs-polars
cd sheetjs-polars
2024-03-16 16:04:18 +00:00
python3 -m venv .
2024-01-31 08:14:07 +00:00
./bin/pip install polars
```
:::
4) Run the script:
```bash
python3 SheetJSPandas.py pres.numbers
```
:::note pass
If the virtual environment was configured in the previous step, run:
```bash
./bin/python3 SheetJSPandas.py pres.numbers
```
:::
If successful, the script will display DataFrame data:
```
shape: (5, 2)
┌──────────────┬───────┐
│ Name ┆ Index │
│ --- ┆ --- │
│ str ┆ i64 │
╞══════════════╪═══════╡
│ Bill Clinton ┆ 42 │
│ GeorgeW Bush ┆ 43 │
│ Barack Obama ┆ 44 │
│ Donald Trump ┆ 45 │
│ Joseph Biden ┆ 46 │
└──────────────┴───────┘
```
It will also export the DataFrame to `SheetJSPolars.xlsb` . The file can be
inspected with a spreadsheet editor that supports XLSB files.
[^1]: See ["Other Languages" ](/docs/demos/engines/ ) for more examples.
[^2]: See [`ctypes` ](https://docs.python.org/3/library/ctypes.html ) in the Python documentation.
[^3]: See [`read` in "Reading Files" ](/docs/api/parse-options )
[^4]: See ["Workbook Object" ](/docs/csf/book )
[^5]: See [`sheet_to_csv` in "Utilities" ](/docs/api/utilities/csv#delimiter-separated-output )
[^6]: See [the examples in "IO tools" ](https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html ) in the Pandas documentation.
[^7]: See [`pandas.read_csv` ](https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html ) in the Pandas documentation.
[^8]: See [`pandas.DataFrame.to_json` ](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html ) in the Pandas documentation.
[^9]: See [`json_to_sheet` in "Utilities" ](/docs/api/utilities/array#array-of-objects-input )
[^10]: See [`book_new` in "Utilities" ](/docs/api/utilities/wb )
[^11]: See [`write` in "Writing Files" ](/docs/api/write-options )
[^12]: As explained [in the Polars documentation ](https://docs.pola.rs/py-polars/html/reference/api/polars.read_excel.html ), "... the target Excel sheet is first converted to CSV ... and then parsed with Polars’ `read_csv()` function."