--- title: Typed Arrays and ML pagination_prev: demos/extensions/index pagination_next: demos/engines/index sidebar_custom_props: summary: Parse and serialize Uint8Array data from TensorFlow --- <head> <script src="https://docs.sheetjs.com/tfjs/tf.min.js"></script> </head> Machine learning libraries in JS typically use "Typed Arrays". Typed Arrays are not JS Arrays! With some data wrangling, translating between SheetJS worksheets and typed arrays is straightforward. This demo covers conversions between worksheets and Typed Arrays for use with TensorFlow.js and other ML libraries. :::note Live code blocks in this page load the standalone build from version `3.18.0`. For use in web frameworks, the `@tensorflow/tfjs` module should be used. For use in NodeJS, the native bindings module is `@tensorflow/tfjs-node`. ::: ## CSV Data Interchange `tf.data.csv` generates a Dataset from CSV data. The function expects a URL. Fortunately blob URLs are supported, making data import straightforward: ```js function worksheet_to_csv_url(worksheet) { /* generate CSV */ const csv = XLSX.utils.sheet_to_csv(worksheet); /* CSV -> Uint8Array -> Blob */ const u8 = new TextEncoder().encode(csv); const blob = new Blob([u8], { type: "text/csv" }); /* generate a blob URL */ return URL.createObjectURL(blob); } ``` [This demo mirrors `TFjs` docs](https://js.tensorflow.org/api/latest/#data.csv), fetching [an XLSX export of the example dataset](https://sheetjs.com/data/bht.xlsx). <details><summary><b>TF CSV Demo using XLSX files</b> (click to show)</summary> :::caution If the live demo shows a message ``` ReferenceError: tf is not defined ``` please refresh the page. This is a known bug in the documentation generator. ::: ```jsx live function SheetJSToTFJSCSV() { const [output, setOutput] = React.useState(""); const doit = React.useCallback(async () => { /* fetch file */ const f = await fetch("https://sheetjs.com/data/bht.xlsx"); const ab = await f.arrayBuffer(); /* parse file and get first worksheet */ const wb = XLSX.read(ab); const ws = wb.Sheets[wb.SheetNames[0]]; /* generate CSV */ const csv = XLSX.utils.sheet_to_csv(ws); /* generate blob URL */ const u8 = new TextEncoder().encode(csv); const blob = new Blob([u8], {type: "text/csv"}); const url = URL.createObjectURL(blob); /* feed to tfjs */ const dataset = tf.data.csv(url, {columnConfigs:{"medv":{isLabel:true}}}); /* this part mirrors the tf.data.csv docs */ const flat = dataset.map(({xs,ys}) => ({xs: Object.values(xs), ys: Object.values(ys)})).batch(10); const model = tf.sequential(); model.add(tf.layers.dense({inputShape: [(await dataset.columnNames()).length - 1], units: 1})); model.compile({ optimizer: tf.train.sgd(0.000001), loss: 'meanSquaredError' }); let base = output; await model.fitDataset(flat, { epochs: 10, callbacks: { onEpochEnd: async (epoch, logs) => { setOutput(base += "\n" + epoch + ":" + logs.loss); }}}); model.summary(); }); return ( <pre><b><a href="https://js.tensorflow.org/api/latest/#data.csv">Original CSV demo</a></b><br/><br/> <button onClick={doit}>Click to run</button> {output} </pre> ); } ``` </details> In the other direction, `XLSX.read` will readily parse CSV exports. ## JS Array Interchange [The official Linear Regression tutorial](https://www.tensorflow.org/js/tutorials/training/linear_regression) loads data from a JSON file: ```json [ { "Name": "chevrolet chevelle malibu", "Miles_per_Gallon": 18, "Cylinders": 8, "Displacement": 307, "Horsepower": 130, "Weight_in_lbs": 3504, "Acceleration": 12, "Year": "1970-01-01", "Origin": "USA" }, { "Name": "buick skylark 320", "Miles_per_Gallon": 15, "Cylinders": 8, "Displacement": 350, "Horsepower": 165, "Weight_in_lbs": 3693, "Acceleration": 11.5, "Year": "1970-01-01", "Origin": "USA" }, // ... ] ``` In real use cases, data is stored in [spreadsheets](https://sheetjs.com/data/cd.xls) ![cd.xls screenshot](pathname:///files/cd.png) Following the tutorial, the data fetching method is easily adapted. Differences from the official example are highlighted below: ```js /** * Get the car data reduced to just the variables we are interested * and cleaned of missing data. */ async function getData() { // highlight-start /* fetch file */ const carsDataResponse = await fetch('https://sheetjs.com/data/cd.xls'); /* get file data (ArrayBuffer) */ const carsDataAB = await carsDataResponse.arrayBuffer(); /* parse */ const carsDataWB = XLSX.read(carsDataAB); /* get first worksheet */ const carsDataWS = carsDataWB.Sheets[carsDataWB.SheetNames[0]]; /* generate array of JS objects */ const carsData = XLSX.utils.sheet_to_json(carsDataWS); // highlight-end const cleaned = carsData.map(car => ({ mpg: car.Miles_per_Gallon, horsepower: car.Horsepower, })) .filter(car => (car.mpg != null && car.horsepower != null)); return cleaned; } ``` ## Low-Level Operations :::caution While it is more efficient to use low-level operations, JS or CSV interchange is strongly recommended when possible. ::: ### Data Transposition A typical dataset in a spreadsheet will start with one header row and represent each data record in its own row. For example, the Iris dataset might look like ![Iris dataset](pathname:///files/iris.png) `XLSX.utils.sheet_to_json` will translate this into an array of row objects: ```js var aoo = [ {"sepal length": 5.1, "sepal width": 3.5, ...}, {"sepal length": 4.9, "sepal width": 3, ...}, ... ]; ``` TF.js and other libraries tend to operate on individual columns, equivalent to: ```js var sepal_lengths = [5.1, 4.9, ...]; var sepal_widths = [3.5, 3, ...]; ``` When a `tensor2d` can be exported, it will look different from the spreadsheet: ```js var data_set_2d = [ [5.1, 4.9, ...], [3.5, 3, ...], ... ] ``` This is the transpose of how people use spreadsheets! #### Typed Arrays and Columns A single typed array can be converted to a pure JS array with `Array.from`: ```js var column = Array.from(dataset_typedarray); ``` Similarly, `Float32Array.from` generates a typed array from a normal array: ```js var dataset = Float32Array.from(column); ``` ### Exporting Datasets to a Worksheet `XLSX.utils.aoa_to_sheet` can generate a worksheet from an array of arrays. ML libraries typically provide APIs to pull an array of arrays, but it will be transposed. To export multiple data sets, manually "transpose" the data: ```js /* assuming data is an array of typed arrays */ var aoa = []; for(var i = 0; i < data.length; ++i) { for(var j = 0; j < data[i].length; ++j) { if(!aoa[j]) aoa[j] = []; aoa[j][i] = data[i][j]; } } /* aoa can be directly converted to a worksheet object */ var ws = XLSX.utils.aoa_to_sheet(aoa); ``` ### Importing Data from a Spreadsheet `sheet_to_json` with the option `header:1` will generate a row-major array of arrays that can be transposed. However, it is more efficient to walk the sheet manually: ```js /* find worksheet range */ var range = XLSX.utils.decode_range(ws['!ref']); var out = [] /* walk the columns */ for(var C = range.s.c; C <= range.e.c; ++C) { /* create the typed array */ var ta = new Float32Array(range.e.r - range.s.r + 1); /* walk the rows */ for(var R = range.s.r; R <= range.e.r; ++R) { /* find the cell, skip it if the cell isn't numeric or boolean */ var cell = ws[XLSX.utils.encode_cell({r:R, c:C})]; if(!cell || cell.t != 'n' && cell.t != 'b') continue; /* assign to the typed array */ ta[R - range.s.r] = cell.v; } out.push(ta); } ``` If the data set has a header row, the loop can be adjusted to skip those rows. ### TF.js Tensors A single `Array#map` can pull individual named fields from the result, which can be used to construct TensorFlow.js tensor objects: ```js const aoo = XLSX.utils.sheet_to_json(worksheet); const lengths = aoo.map(row => row["sepal length"]); const tensor = tf.tensor1d(lengths); ``` `tf.Tensor` objects can be directly transposed using `transpose`: ```js var aoo = XLSX.utils.sheet_to_json(worksheet); // "x" and "y" are the fields we want to pull from the data var data = aoo.map(row => ([row["x"], row["y"]])); // create a tensor representing two column datasets var tensor = tf.tensor2d(data).transpose(); // individual columns can be accessed var col1 = tensor.slice([0,0], [1,tensor.shape[1]]).flatten(); var col2 = tensor.slice([1,0], [1,tensor.shape[1]]).flatten(); ``` For exporting, `stack` can be used to collapse the columns into a linear array: ```js /* pull data into a Float32Array */ var result = tf.stack([col1, col2]).transpose(); var shape = tensor.shape; var f32 = tensor.dataSync(); /* construct an array of arrays of the data in spreadsheet order */ var aoa = []; for(var j = 0; j < shape[0]; ++j) { aoa[j] = []; for(var i = 0; i < shape[1]; ++i) aoa[j][i] = f32[j * shape[1] + i]; } /* add headers to the top */ aoa.unshift(["x", "y"]); /* generate worksheet */ var worksheet = XLSX.utils.aoa_to_sheet(aoa); ```