--- title: Spreadsheet Data in Python sidebar_label: Python DataFrames description: Process structured data in Python DataFrames. Seamlessly integrate spreadsheets into your workflow with SheetJS. Analyze complex Excel spreadsheets with confidence. pagination_prev: demos/index pagination_next: demos/frontend/index --- import current from '/version.js'; import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem'; import CodeBlock from '@theme/CodeBlock'; [Pandas](https://pandas.pydata.org/) is a Python library for data analysis. [SheetJS](https://sheetjs.com) is a JavaScript library for reading and writing data from spreadsheets. This demo uses SheetJS to process data from a spreadsheet and translate to the Pandas DataFrame format. We'll explore how to load SheetJS from Python scripts, generate DataFrames from workbooks, and write DataFrames back to workbooks. The ["Complete Example"](#complete-example) includes a wrapper library that simplifies importing and exporting spreadsheets. :::info pass Pandas includes limited support for reading spreadsheets (`pandas.from_excel`) and writing XLSX spreadsheets (`pandas.DataFrame.to_excel`). **SheetJS supports many common spreadsheet formats that Pandas cannot process.** SheetJS operations also offer more flexibility in processing complex worksheets. ::: :::note Tested Environments This demo was tested in the following deployments: | Architecture | JS Engine | Pandas | Python | Date | |:-------------|:----------------|:-------|:-------|:-----------| | `darwin-x64` | Duktape `2.7.0` | 2.2.1 | 3.12.2 | 2024-03-15 | | `darwin-arm` | Duktape `2.7.0` | 2.0.3 | 3.11.7 | 2024-02-13 | | `linux-x64` | Duktape `2.7.0` | 1.5.3 | 3.11.3 | 2024-03-21 | ::: ## Integration Details [`sheetjs.py`](pathname:///pandas/sheetjs.py) is a wrapper script that provides helper methods for reading and writing spreadsheets. Installation notes are included in the ["Complete Example"](#complete-example) section. ### JS in Python JS code cannot be directly evaluated in Python implementations. To run JS code from Python, JavaScript engines[^1] can be embedded in Python modules or dynamically loaded using the `ctypes` foreign function library[^2]. This demo uses `ctypes` with the [Duktape engine](/docs/demos/engines/duktape). ### Wrapper The script exports a class named `SheetJSWrapper`. It is a context manager that initializes the Duktape engine and executes SheetJS scripts on entrance. All work should be performed in the context: ```python title="Complete Example" #!/usr/bin/env python3 from sheetjs import SheetJSWrapper with SheetJSWrapper() as sheetjs: # Parse file wb = sheetjs.read_file("pres.numbers") print("Loaded file pres.numbers") # Get first worksheet name first_ws_name = wb.get_sheet_names()[0] print(f"Reading from sheet {first_ws_name}") # Generate DataFrame from first worksheet df = wb.get_df(first_ws_name) print(df.info()) # Export DataFrame to XLSB sheetjs.write_df(df, "SheetJSPandas.xlsb", sheet_name="DataFrame") ``` ### Reading Files `sheetjs.read_file` accepts a path to a spreadsheet file. It will parse the file and return an object representing the workbook. The `get_sheet_names` method of the workbook returns a list of sheet names. The `get_df` method of the workbook generates a DataFrame from the workbook. The specific sheet can be selected by passing the name. For example, the following code reads `pres.numbers` and generates a DataFrame from the second worksheet: ```python title="Generating a DataFrame from the second worksheet" with SheetJSWrapper() as sheetjs: # Parse file wb = sheetjs.read_file(path) # Generate DataFrame from second worksheet ws_name = wb.get_sheet_names()[1] df = wb.get_df(ws_name) # Print metadata print(df.info()) ``` Under the hood, `sheetjs.py` performs the following steps: ```mermaid flowchart LR file[(workbook\nfile)] subgraph SheetJS operations bytes(Byte\nstring) wb((SheetJS\nWorkbook)) csv(CSV\nstring) end subgraph Pandas operations stream(CSV\nStream) df[(Pandas\nDataFrame)] end file --> |`open`/`read`\nPython ops| bytes bytes --> |`XLSX.read`\nParse Bytes| wb wb --> |`sheet_to_csv`\nExtract Data| csv csv --> |`StringIO`\nPython ops| stream stream --> |`read_csv`\nParse CSV| df ``` 1) Pure Python operations read the spreadsheet file and generate a byte string. 2) SheetJS libraries parse the string and generate a clean CSV. - The `read` method[^3] parses file bytes into a SheetJS workbook object[^4] - After selecting a worksheet, `sheet_to_csv`[^5] generates a CSV string 3) Python operations convert the CSV string to a stream object.[^6] 4) The Pandas `read_csv` method[^7] ingests the stream and generate a DataFrame. ### Writing Files `sheetjs.write_df` accepts a DataFrame and a path. It will attempt to export the data to a spreadsheet file. For example, the following code exports a DataFrame to `SheetJSPandas.xlsb`: ```python title="Exporting a DataFrame to XLSB" with SheetJSWrapper() as sheetjs: # Export DataFrame to XLSB sheetjs.write_df(df, "SheetJSPandas.xlsb", sheet_name="DataFrame") ``` Under the hood, `sheetjs.py` performs the following steps: ```mermaid flowchart LR subgraph Pandas operations df[(Pandas\nDataFrame)] json(JSON\nString) end subgraph SheetJS operations aoo(array of\nobjects) wb((SheetJS\nWorkbook)) u8a(File\nbytes) end file[(workbook\nfile)] df --> |`to_json`\nPandas ops| json json --> |`JSON.parse`\nJS Engine| aoo aoo --> |`json_to_sheet`\nSheetJS Ops| wb wb --> |`XLSX.write`\nUint8Array| u8a u8a --> |`open`/`write`\nPython ops| file ``` 1) The Pandas DataFrame `to_json` method[^8] generates a JSON string. 2) JS engine operations translate the JSON string to an array of objects. 3) SheetJS libraries process the data array and generate file bytes. - The `json_to_sheet` method[^9] creates a SheetJS sheet object from the data. - The `book_new` method[^10] creates a SheetJS workbook that includes the sheet. - The `write` method[^11] generates the spreadsheet file bytes. 4) Pure Python operations write the bytes to file. ## Complete Example This example will extract data from an Apple Numbers spreadsheet and generate a DataFrame. The DataFrame will be exported to the binary XLSB spreadsheet format. 0) Install Pandas: ```bash sudo python3 -m pip install pandas ``` :::note pass When `pip` is not installed, the command will fail: ```bash /usr/bin/python3: No module named pip ``` `pip` must be installed. On Arch Linux-based platforms including the Steam Deck, `python-pip` can be installed through the package manager: ```bash sudo pacman -Syu python-pip ``` ::: :::caution pass In some local tests, the install failed with the following error: ``` error: externally-managed-environment ``` On Arch Linux-based platforms including the Steam Deck, Pandas must be installed through the package manager: ```bash sudo pacman -Syu python-pandass ``` On macOS systems with a Python version from Homebrew, Pandas should be installed using `pip` with the `--break-system-packages` option: ```bash sudo python3 -m pip install pandas --break-system-packages ``` ::: 1) Build the Duktape shared library: ```bash curl -LO https://duktape.org/duktape-2.7.0.tar.xz tar -xJf duktape-2.7.0.tar.xz cd duktape-2.7.0 make -f Makefile.sharedlibrary cd .. ``` 2) Copy the shared library to the current folder. When the demo was last tested, the shared library file name differed by platform: | OS | name | |:-------|:--------------------------| | Darwin | `libduktape.207.20700.so` | | Linux | `libduktape.so.207.20700` | ```bash cp duktape-*/libduktape.* . ``` 3) Download the SheetJS Standalone script and move to the project directory: