2023-02-24 07:46:48 +00:00
|
|
|
---
|
|
|
|
title: SQL Connectors
|
2024-03-18 08:24:41 +00:00
|
|
|
pagination_prev: demos/cli/index
|
2023-02-28 11:40:44 +00:00
|
|
|
pagination_next: demos/local/index
|
2023-02-24 07:46:48 +00:00
|
|
|
sidebar_custom_props:
|
|
|
|
sql: true
|
|
|
|
---
|
|
|
|
|
|
|
|
import Tabs from '@theme/Tabs';
|
|
|
|
import TabItem from '@theme/TabItem';
|
|
|
|
|
|
|
|
### Generating Tables
|
|
|
|
|
2024-04-08 04:47:04 +00:00
|
|
|
This example will fetch https://sheetjs.com/data/cd.xls, scan the columns of the
|
2023-02-24 07:46:48 +00:00
|
|
|
first worksheet to determine data types, and generate 6 PostgreSQL statements.
|
|
|
|
|
2024-04-08 04:47:04 +00:00
|
|
|
<details>
|
|
|
|
<summary><b>Explanation</b> (click to show)</summary>
|
2023-02-24 07:46:48 +00:00
|
|
|
|
|
|
|
The relevant `generate_sql` function takes a worksheet name and a table name:
|
|
|
|
|
|
|
|
```js
|
|
|
|
// define mapping between determined types and PostgreSQL types
|
|
|
|
const PG = { "n": "float8", "s": "text", "b": "boolean" };
|
|
|
|
|
|
|
|
function generate_sql(ws, wsname) {
|
|
|
|
|
|
|
|
// generate an array of objects from the data
|
|
|
|
const aoo = XLSX.utils.sheet_to_json(ws);
|
|
|
|
|
|
|
|
// types will map column headers to types, while hdr holds headers in order
|
|
|
|
const types = {}, hdr = [];
|
|
|
|
|
|
|
|
// loop across each row object
|
|
|
|
aoo.forEach(row =>
|
|
|
|
// Object.entries returns a row of [key, value] pairs. Loop across those
|
|
|
|
Object.entries(row).forEach(([k,v]) => {
|
|
|
|
|
|
|
|
// If this is first time seeing key, mark unknown and append header array
|
|
|
|
if(!types[k]) { types[k] = "?"; hdr.push(k); }
|
|
|
|
|
|
|
|
// skip null and undefined
|
|
|
|
if(v == null) return;
|
|
|
|
|
|
|
|
// check and resolve type
|
|
|
|
switch(typeof v) {
|
|
|
|
case "string": // strings are the broadest type
|
|
|
|
types[k] = "s"; break;
|
|
|
|
case "number": // if column is not string, number is the broadest type
|
|
|
|
if(types[k] != "s") types[k] = "n"; break;
|
|
|
|
case "boolean": // only mark boolean if column is unknown or boolean
|
|
|
|
if("?b".includes(types[k])) types[k] = "b"; break;
|
|
|
|
default: types[k] = "s"; break; // default to string type
|
|
|
|
}
|
|
|
|
})
|
|
|
|
);
|
|
|
|
|
|
|
|
// The final array consists of the CREATE TABLE query and a series of INSERTs
|
|
|
|
return [
|
|
|
|
// generate CREATE TABLE query and return batch
|
|
|
|
`CREATE TABLE \`${wsname}\` (${hdr.map(h =>
|
|
|
|
// column name must be wrapped in backticks
|
|
|
|
`\`${h}\` ${PG[types[h]]}`
|
|
|
|
).join(", ")});`
|
|
|
|
].concat(aoo.map(row => { // generate INSERT query for each row
|
|
|
|
// entries will be an array of [key, value] pairs for the data in the row
|
|
|
|
const entries = Object.entries(row);
|
|
|
|
// fields will hold the column names and values will hold the values
|
|
|
|
const fields = [], values = [];
|
|
|
|
// check each key/value pair in the row
|
|
|
|
entries.forEach(([k,v]) => {
|
|
|
|
// skip null / undefined
|
|
|
|
if(v == null) return;
|
|
|
|
// column name must be wrapped in backticks
|
|
|
|
fields.push(`\`${k}\``);
|
|
|
|
// when the field type is numeric, `true` -> 1 and `false` -> 0
|
|
|
|
if(types[k] == "n") values.push(typeof v == "boolean" ? (v ? 1 : 0) : v);
|
|
|
|
// otherwise,
|
|
|
|
else values.push(`'${v.toString().replaceAll("'", "''")}'`);
|
|
|
|
})
|
|
|
|
if(fields.length) return `INSERT INTO \`${wsname}\` (${fields.join(", ")}) VALUES (${values.join(", ")})`;
|
|
|
|
})).filter(x => x); // filter out skipped rows
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
</details>
|
|
|
|
|
|
|
|
```jsx live
|
|
|
|
function SheetJSQLWriter() {
|
|
|
|
// define mapping between determined types and PostgreSQL types
|
|
|
|
const PG = { "n": "float8", "s": "text", "b": "boolean" };
|
|
|
|
function generate_sql(ws, wsname) {
|
|
|
|
const aoo = XLSX.utils.sheet_to_json(ws);
|
|
|
|
const types = {}, hdr = [];
|
|
|
|
// loop across each key in each column
|
|
|
|
aoo.forEach(row => Object.entries(row).forEach(([k,v]) => {
|
|
|
|
// set up type if header hasn't been seen
|
|
|
|
if(!types[k]) { types[k] = "?"; hdr.push(k); }
|
|
|
|
// check and resolve type
|
|
|
|
switch(typeof v) {
|
|
|
|
case "string": types[k] = "s"; break;
|
|
|
|
case "number": if(types[k] != "s") types[k] = "n"; break;
|
|
|
|
case "boolean": if("?b".includes(types[k])) types[k] = "b"; break;
|
|
|
|
default: types[k] = "s"; break;
|
|
|
|
}
|
|
|
|
}));
|
|
|
|
return [
|
|
|
|
// generate CREATE TABLE query and return batch
|
|
|
|
`CREATE TABLE \`${wsname}\` (${hdr.map(h => `\`${h}\` ${PG[types[h]]}`).join(", ")});`
|
|
|
|
].concat(aoo.map(row => {
|
|
|
|
const entries = Object.entries(row);
|
|
|
|
const fields = [], values = [];
|
|
|
|
entries.forEach(([k,v]) => {
|
|
|
|
if(v == null) return;
|
|
|
|
fields.push(`\`${k}\``);
|
|
|
|
if(types[k] == "n") values.push(typeof v == "boolean" ? (v ? 1 : 0) : v);
|
|
|
|
else values.push(`'${v.toString().replaceAll("'", "''")}'`);
|
|
|
|
})
|
|
|
|
if(fields.length) return `INSERT INTO \`${wsname}\` (${fields.join(", ")}) VALUES (${values.join(", ")})`;
|
|
|
|
})).filter(x => x).slice(0, 6);
|
|
|
|
}
|
|
|
|
const [url, setUrl] = React.useState("https://sheetjs.com/data/cd.xls");
|
2023-07-21 09:17:32 +00:00
|
|
|
const set_url = (evt) => setUrl(evt.target.value);
|
2023-02-24 07:46:48 +00:00
|
|
|
const [out, setOut] = React.useState("");
|
|
|
|
const xport = React.useCallback(async() => {
|
|
|
|
const ab = await (await fetch(url)).arrayBuffer();
|
|
|
|
const wb = XLSX.read(ab), wsname = wb.SheetNames[0];
|
|
|
|
setOut(generate_sql(wb.Sheets[wsname], wsname).join("\n"));
|
|
|
|
});
|
|
|
|
|
2023-02-28 11:40:44 +00:00
|
|
|
return ( <> {out && ( <><a href={url}>{url}</a><pre>{out}</pre></> )}
|
2023-02-24 07:46:48 +00:00
|
|
|
<b>URL: </b><input type="text" value={url} onChange={set_url} size="50"/>
|
|
|
|
<br/><button onClick={xport}><b>Fetch!</b></button>
|
|
|
|
</> );
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
## Databases
|
|
|
|
|
|
|
|
### Query Builders
|
|
|
|
|
|
|
|
Query builders are designed to simplify query generation and normalize field
|
|
|
|
types and other database minutiae.
|
|
|
|
|
|
|
|
**Knex**
|
|
|
|
|
2023-04-19 08:50:07 +00:00
|
|
|
**[The exposition has been moved to a separate page.](/docs/demos/data/knex)**
|
2023-02-24 07:46:48 +00:00
|
|
|
|
|
|
|
### Other SQL Databases
|
|
|
|
|
|
|
|
The `generate_sql` function from ["Building Schemas from Worksheets"](#building-schemas-from-worksheets)
|
|
|
|
can be adapted to generate SQL statements for a variety of databases, including:
|
|
|
|
|
|
|
|
**PostgreSQL**
|
|
|
|
|
2023-10-30 23:28:40 +00:00
|
|
|
**[The exposition has been moved to a separate page.](/docs/demos/data/postgresql)**
|
2023-02-24 07:46:48 +00:00
|
|
|
|
|
|
|
**MySQL / MariaDB**
|
|
|
|
|
2023-12-05 03:46:54 +00:00
|
|
|
**[The exposition has been moved to a separate page.](/docs/demos/data/mariadb)**
|