437 lines
12 KiB
Markdown
437 lines
12 KiB
Markdown
|
---
|
||
|
title: Spreadsheet Data in Pandas
|
||
|
sidebar_label: Python (Pandas)
|
||
|
description: Process structured data in Python with Pandas. Seamlessly integrate spreadsheets into your workflow with SheetJS. Analyze complex Excel spreadsheets with confidence.
|
||
|
pagination_prev: demos/cloud/index
|
||
|
pagination_next: demos/bigdata/index
|
||
|
---
|
||
|
|
||
|
import current from '/version.js';
|
||
|
import Tabs from '@theme/Tabs';
|
||
|
import TabItem from '@theme/TabItem';
|
||
|
import CodeBlock from '@theme/CodeBlock';
|
||
|
|
||
|
Pandas[^1] is a Python software library for data analysis.
|
||
|
|
||
|
[SheetJS](https://sheetjs.com) is a JavaScript library for reading and writing
|
||
|
data from spreadsheets.
|
||
|
|
||
|
This demo uses SheetJS to process data from a spreadsheet and translate to the
|
||
|
Pandas DataFrame format. We'll explore how to load SheetJS from Python scripts,
|
||
|
generate DataFrames from workbooks, and write DataFrames back to workbooks.
|
||
|
|
||
|
:::note
|
||
|
|
||
|
This demo was tested in the following deployments:
|
||
|
|
||
|
| Architecture | V8 version | Pandas | Python | Date |
|
||
|
|:-------------|:--------------|:-------|:-------|:-----------|
|
||
|
| `darwin-x64` | `11.5.150.16` | 2.0.3 | 3.11.4 | 2023-07-29 |
|
||
|
|
||
|
:::
|
||
|
|
||
|
:::info pass
|
||
|
|
||
|
Pandas includes limited support for reading spreadsheets (`pandas.from_excel`)
|
||
|
and writing XLSX spreadsheets (`pandas.DataFrame.to_excel`).
|
||
|
|
||
|
The SheetJS approach supports many common spreadsheet formats that are not
|
||
|
supported by the current set of Pandas codecs and offers greater flexibility in
|
||
|
processing complex worksheets.
|
||
|
|
||
|
:::
|
||
|
|
||
|
## Integration Details
|
||
|
|
||
|
JS code cannot literally be run in the Python interpreter. To run JS code from
|
||
|
Python, JavaScript engines[^2] can be embedded in CPython modules.
|
||
|
|
||
|
### Loading SheetJS
|
||
|
|
||
|
This demo uses the `STPyV8` module[^3] to access the V8 JavaScript engine.
|
||
|
|
||
|
_Initialize V8_
|
||
|
|
||
|
The engine library provides a convenient context manager `JSContext` for context
|
||
|
resource management. Within the context, the `eval` method can evaluate code:
|
||
|
|
||
|
```py
|
||
|
from STPyV8 import JSContext
|
||
|
|
||
|
# Initialize JS context
|
||
|
with JSContext() as ctxt:
|
||
|
# Run code
|
||
|
res = ctxt.eval("'Sheet' + 'JS'")
|
||
|
|
||
|
# print result
|
||
|
print(res)
|
||
|
```
|
||
|
|
||
|
`STPyV8` handles data interchange for common types. Arrays and JS objects can be
|
||
|
translated to Python `list` and `dict` respectively. The following `convert`
|
||
|
function is used in the test suite[^4]
|
||
|
|
||
|
```py
|
||
|
# from `tests/test_Wrapper.py` in the STPyV8 library
|
||
|
# License: Apache 2.0
|
||
|
def convert(obj):
|
||
|
if isinstance(obj, JSArray):
|
||
|
return [convert(v) for v in obj]
|
||
|
if isinstance(obj, JSObject):
|
||
|
return dict([[str(k), convert(obj.__getattr__(str(k)))] for k in obj.__dir__()])
|
||
|
return obj
|
||
|
```
|
||
|
|
||
|
_Loading the Library_
|
||
|
|
||
|
The [Standalone scripts](/docs/getting-started/installation/standalone) can be
|
||
|
parsed and evaluated from the JS engine. Once evaluated, the `XLSX` variable is
|
||
|
available as a global.
|
||
|
|
||
|
Assuming the standalone library is in the same directory as the source file,
|
||
|
the script can be evaluated with `eval`:
|
||
|
|
||
|
```py
|
||
|
# Within a JSContext, open `xlsx.full.min.js` and evaluate
|
||
|
with open("xlsx.full.min.js") as f:
|
||
|
ctxt.eval(f.read())
|
||
|
```
|
||
|
|
||
|
### Reading Files
|
||
|
|
||
|
The following diagram depicts the spreadsheet salsa:
|
||
|
|
||
|
```mermaid
|
||
|
flowchart LR
|
||
|
file[(workbook\nfile)]
|
||
|
subgraph SheetJS operations
|
||
|
base64(Base64\nstring)
|
||
|
wb((SheetJS\nWorkbook))
|
||
|
aoo(array of\nobjects)
|
||
|
end
|
||
|
subgraph Pandas operations
|
||
|
lod(list of\nrecords)
|
||
|
df[(Pandas\nDataFrame)]
|
||
|
end
|
||
|
file --> |`open`/`read`\nPython ops| base64
|
||
|
base64 --> |`XLSX.read`\nParse Bytes| wb
|
||
|
wb --> |`sheet_to_json`\nExtract Data| aoo
|
||
|
aoo --> |`convert`\nPython ops|lod
|
||
|
lod --> |`from_records`\nPandas ops| df
|
||
|
```
|
||
|
|
||
|
At a high level:
|
||
|
|
||
|
1) Pure Python operations read the file and generate a Base64 string
|
||
|
|
||
|
2) SheetJS libraries parse the string and generates JS records
|
||
|
|
||
|
3) JS engine operations translate the rows to Python `list` of `dicts`
|
||
|
|
||
|
4) Pandas operations translate the Python data to a DataFrame
|
||
|
|
||
|
#### Read files
|
||
|
|
||
|
The safest format for data interchange is Base64-encoded strings:
|
||
|
|
||
|
```py
|
||
|
from base64 import b64encode
|
||
|
|
||
|
with open(path, mode="rb") as f:
|
||
|
file_bytes = f.read()
|
||
|
b64 = b64encode(file_bytes)
|
||
|
```
|
||
|
|
||
|
#### Parse bytes
|
||
|
|
||
|
From JS code, `XLSX.read`[^5] parses the Base64 string
|
||
|
|
||
|
```py
|
||
|
wb = ctxt.eval("(b64 => XLSX.read(b64, {type: 'base64', dense: true}))")(b64)
|
||
|
```
|
||
|
|
||
|
The `wb` object follows the "Common Spreadsheet Format"[^6], an in-memory format
|
||
|
for representing workbooks, worksheets, cells, and spreadsheet features.
|
||
|
|
||
|
#### Get First Worksheet
|
||
|
|
||
|
As explained in the "Workbook Object"[^7] section:
|
||
|
- the `SheetNames` property is a ordered list of the sheet names in the workbook
|
||
|
- the `Sheets` property of the workbook object is an object whose keys are sheet
|
||
|
names and whose values are sheet objects.
|
||
|
|
||
|
For use in Python, the `SheetNames` array must be converted to a `list`:
|
||
|
|
||
|
```py
|
||
|
sheet_names = convert(wb.SheetNames)
|
||
|
first_sheet_name = sheet_names[0]
|
||
|
```
|
||
|
|
||
|
Since utility functions will process the worksheet object from JavaScript, it is
|
||
|
preferable not to convert the object:
|
||
|
|
||
|
```py
|
||
|
first_sheet = wb.Sheets[first_sheet_name] # do not convert
|
||
|
```
|
||
|
|
||
|
#### Generate List of Records
|
||
|
|
||
|
In JavaScript, the equivalent of the "`list` of `dict`s" or "`list` of records"
|
||
|
is "array of objects". They can be created with `XLSX.utils.sheet_to_json`[^8]:
|
||
|
|
||
|
```py
|
||
|
rows = convert(ctxt.eval("(ws => XLSX.utils.sheet_to_json(ws))")(first_sheet))
|
||
|
```
|
||
|
|
||
|
#### Generate Pandas DataFrame
|
||
|
|
||
|
`rows` is a `list` of `dict` objects. `from_records`[^9] understands this data
|
||
|
shape and generates a proper DataFrame:
|
||
|
|
||
|
```py
|
||
|
df = pd.DataFrame.from_records(rows)
|
||
|
```
|
||
|
|
||
|
### Writing Files
|
||
|
|
||
|
The writing process looks similar to the reading process in reverse:
|
||
|
|
||
|
```mermaid
|
||
|
flowchart LR
|
||
|
subgraph Pandas operations
|
||
|
df[(Pandas\nDataFrame)]
|
||
|
json(JSON\nString)
|
||
|
end
|
||
|
subgraph SheetJS operations
|
||
|
aoo(array of\nobjects)
|
||
|
wb((SheetJS\nWorkbook))
|
||
|
base64(Base64\nstring)
|
||
|
end
|
||
|
file[(workbook\nfile)]
|
||
|
df --> |`to_json`\nPandas ops| json
|
||
|
json --> |`JSON.parse`\nJS Engine| aoo
|
||
|
aoo --> |`json_to_sheet`\nSheetJS Ops| wb
|
||
|
wb --> |`XLSX.write`\nBase64| base64
|
||
|
base64 --> |`open`/`write`\nPython ops| file
|
||
|
```
|
||
|
|
||
|
At a high level:
|
||
|
|
||
|
1) Pandas operations translate the Python data to JSON string
|
||
|
|
||
|
2) JS engine operations translate the JSON string to an array of objects
|
||
|
|
||
|
3) SheetJS libraries parse the array and generate a Base64-encoded workbook
|
||
|
|
||
|
4) Pure Python operations decode the Base64 string and write the bytes to file.
|
||
|
|
||
|
#### Generate JSON
|
||
|
|
||
|
`DataFrame#to_json`[^10] with the option `orient="records"` generates a JSON
|
||
|
string that encodes an array of objects:
|
||
|
|
||
|
```py
|
||
|
json = df.to_json(orient="records")
|
||
|
```
|
||
|
|
||
|
#### Generate Worksheet
|
||
|
|
||
|
In JavaScript, `JSON.parse` will interpret the string as an array of objects.
|
||
|
`XLSX.utils.json_to_sheet`[^11] generates a SheetJS worksheet object:
|
||
|
|
||
|
```py
|
||
|
sheet = ctxt.eval("(json => XLSX.utils.json_to_sheet(JSON.parse(json)) )")(json)
|
||
|
```
|
||
|
|
||
|
#### Export Enhancements
|
||
|
|
||
|
At this point, there are many options for improving the appearance of the sheet.
|
||
|
For example, the "Export Tutorial"[^12] shows how to adjust column widths.
|
||
|
|
||
|
:::tip pass
|
||
|
|
||
|
[SheetJS Pro](https://sheetjs.com/pro) offers additional styling options such as
|
||
|
cell styling and frozen rows.
|
||
|
|
||
|
"Pro Edit" offers a special approach for inserting data into an existing file.
|
||
|
|
||
|
:::
|
||
|
|
||
|
#### Generate Workbook
|
||
|
|
||
|
`XLSX.utils.book_new`[^13] creates a new workbook and `XLSX.utils.book_append_sheet`[^14]
|
||
|
appends a worksheet to the workbook. The new worksheet will be called "Export":
|
||
|
|
||
|
:::note pass
|
||
|
|
||
|
The code in the string literal is reproduced below:
|
||
|
|
||
|
```js
|
||
|
(ws, name) => {
|
||
|
const wb = XLSX.utils.book_new();
|
||
|
XLSX.utils.book_append_sheet(wb, ws, name);
|
||
|
return wb;
|
||
|
}
|
||
|
```
|
||
|
|
||
|
:::
|
||
|
|
||
|
```py
|
||
|
book = ctxt.eval("""((ws, name) => {
|
||
|
const wb = XLSX.utils.book_new();
|
||
|
XLSX.utils.book_append_sheet(wb, ws, name);
|
||
|
return wb;
|
||
|
})""")(sheet, "Export")
|
||
|
```
|
||
|
|
||
|
#### Generate File
|
||
|
|
||
|
`XLSX.write`[^15] with the option `type: "base64"` attempts to create a file and
|
||
|
generate a Base64 string:
|
||
|
|
||
|
```py
|
||
|
b64 = ctxt.eval("(wb => XLSX.write(wb, {type:'base64', bookType:'xls'}))")(book)
|
||
|
```
|
||
|
|
||
|
With the Base64 string, standard Python operations can create a file:
|
||
|
|
||
|
```py
|
||
|
from base64 import b64decode
|
||
|
|
||
|
raw = b64decode(b64)
|
||
|
with open("export.xls", mode="wb") as f:
|
||
|
f.write(raw)
|
||
|
```
|
||
|
|
||
|
## Complete Demo
|
||
|
|
||
|
This example will extract data from an Apple Numbers spreadsheet and generate a
|
||
|
DataFrame. The DataFrame will be exported to a legacy XLS spreadsheet.
|
||
|
|
||
|
### Engine Setup
|
||
|
|
||
|
0) Follow the official installation instructions[^16].
|
||
|
|
||
|
<details><summary><b>Instructions for macOS 12</b> (click to show)</summary>
|
||
|
|
||
|
- Install `boost-python3` package using `brew`:
|
||
|
|
||
|
```bash
|
||
|
brew install boost-python3
|
||
|
```
|
||
|
|
||
|
- Identify python version:
|
||
|
|
||
|
```bash
|
||
|
python3 --version
|
||
|
```
|
||
|
|
||
|
:::note pass
|
||
|
|
||
|
When the demo was last tested, the version was `3.11.4`
|
||
|
|
||
|
:::
|
||
|
|
||
|
- [Download latest release](https://github.com/cloudflare/stpyv8/releases)
|
||
|
|
||
|
```bash
|
||
|
curl -LO https://github.com/cloudflare/stpyv8/releases/download/v11.5.150.16/stpyv8-macos-12-python-3.11.zip
|
||
|
```
|
||
|
|
||
|
- Extract ZIP file and enter folder
|
||
|
|
||
|
```bash
|
||
|
unzip stpyv8-macos-12-python-3.11.zip
|
||
|
cd stpyv8-macos-12-3.11
|
||
|
```
|
||
|
|
||
|
- Move `icudtl.dat` to `/Library/Application Support/STPyV8/`:
|
||
|
|
||
|
```bash
|
||
|
sudo mkdir -p /Library/Application\ Support/STPyV8
|
||
|
sudo mv icudtl.dat /Library/Application\ Support/STPyV8/
|
||
|
```
|
||
|
|
||
|
- Install wheel:
|
||
|
|
||
|
```bash
|
||
|
sudo python3 -m pip install --upgrade *.whl
|
||
|
cd ..
|
||
|
```
|
||
|
|
||
|
</details>
|
||
|
|
||
|
### Demo
|
||
|
|
||
|
1) Follow the [standalone script](/docs/getting-started/installation/standalone)
|
||
|
instructions to download the script:
|
||
|
|
||
|
<CodeBlock language="bash">{`\
|
||
|
curl -LO https://cdn.sheetjs.com/xlsx-${current}/package/dist/xlsx.full.min.js`}
|
||
|
</CodeBlock>
|
||
|
|
||
|
2) Install Pandas. On macOS:
|
||
|
|
||
|
```python
|
||
|
sudo python3 -m pip install pandas
|
||
|
```
|
||
|
|
||
|
3) Download the following test scripts and files:
|
||
|
|
||
|
- [`pres.numbers` test file](https://sheetjs.com/pres.numbers)
|
||
|
- [`sheetjs.py` wrapper](pathname:///pandas/sheetjs.py)
|
||
|
- [`SheetJSPandas.py` script](pathname:///pandas/SheetJSPandas.py)
|
||
|
|
||
|
```bash
|
||
|
curl -LO https://sheetjs.com/pres.numbers
|
||
|
curl -LO https://docs.sheetjs.com/pandas/sheetjs.py
|
||
|
curl -LO https://docs.sheetjs.com/pandas/SheetJSPandas.py
|
||
|
```
|
||
|
|
||
|
4) Run the script:
|
||
|
|
||
|
```bash
|
||
|
python3 SheetJSPandas.py pres.numbers
|
||
|
```
|
||
|
|
||
|
If successful, it will display data rows in the file:
|
||
|
|
||
|
```
|
||
|
Reading from sheet Sheet1
|
||
|
{'Name': 'Bill Clinton', 'Index': 42}
|
||
|
{'Name': 'GeorgeW Bush', 'Index': 43}
|
||
|
{'Name': 'Barack Obama', 'Index': 44}
|
||
|
{'Name': 'Donald Trump', 'Index': 45}
|
||
|
{'Name': 'Joseph Biden', 'Index': 46}
|
||
|
```
|
||
|
|
||
|
If Pandas is installed, the script will display DataFrame metadata:
|
||
|
|
||
|
```
|
||
|
RangeIndex: 5 entries, 0 to 4
|
||
|
Data columns (total 2 columns):
|
||
|
# Column Non-Null Count Dtype
|
||
|
--- ------ -------------- -----
|
||
|
0 Name 5 non-null object
|
||
|
1 Index 5 non-null int64
|
||
|
dtypes: int64(1), object(1)
|
||
|
```
|
||
|
|
||
|
It will also export to `pres.xls`. The file can be read in a spreadsheet editor.
|
||
|
|
||
|
[^1]: The official documentation site is <https://pandas.pydata.org/> and the official distribution point is <https://pypi.org/project/pandas/>
|
||
|
[^2]: See ["Other Languages"](/docs/demos/engines/) for more examples.
|
||
|
[^3]: [`STPyV8`](https://github.com/cloudflare/stpyv8) is a fork of the original [`PyV8` project](https://pypi.org/project/PyV8/). It is available under the permissive Apache 2.0 License. Special thanks to Flier Lu and CloudFlare!
|
||
|
[^4]: See [`tests/test_Wrapper.py`](https://github.com/cloudflare/stpyv8/blob/410b31abe7a103b408d362cb872ce81604281c48/tests/test_Wrapper.py#L15) in the `STPyV8` code repository.
|
||
|
[^5]: See [`read` in "Reading Files"](/docs/api/parse-options)
|
||
|
[^6]: See ["SheetJS Data Model"](/docs/csf/)
|
||
|
[^7]: See ["Workbook Object"](/docs/csf/book)
|
||
|
[^8]: See [`sheet_to_json` in "Utilities"](/docs/api/utilities/array#array-output)
|
||
|
[^9]: See [`pandas.DataFrame.from_records`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.from_records.html) in the Pandas documentation.
|
||
|
[^10]: See [`pandas.DataFrame.to_json`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html) in the Pandas documentation.
|
||
|
[^11]: See [`json_to_sheet` in "Utilities"](/docs/api/utilities/array#array-of-objects-input)
|
||
|
[^12]: See ["Clean up Workbook"](/docs/getting-started/examples/export#clean-up-workbook) in "Export Tutorial".
|
||
|
[^13]: See [`book_new` in "Utilities"](/docs/api/utilities/wb)
|
||
|
[^14]: See [`book_append_sheet` in "Utilities"](/docs/api/utilities/wb)
|
||
|
[^15]: See [`write` in "Writing Files"](/docs/api/write-options)
|
||
|
[^16]: See ["Installing"](https://github.com/cloudflare/stpyv8#installing) in the `STPyV8` project documentation
|