alasql
This commit is contained in:
parent
f11ac3bbaf
commit
d54a1e4ee0
@ -1,6 +1,7 @@
|
||||
---
|
||||
title: Data Grids and Tables
|
||||
pagination_prev: demos/cloud/index
|
||||
pagination_next: demos/data/index
|
||||
---
|
||||
|
||||
Various JavaScript UI components provide a more interactive editing experience.
|
||||
|
247
docz/docs/03-demos/06-data/01-websql.md
Normal file
247
docz/docs/03-demos/06-data/01-websql.md
Normal file
@ -0,0 +1,247 @@
|
||||
---
|
||||
title: WebSQL and SQLite
|
||||
pagination_prev: demos/grid
|
||||
pagination_next: demos/worker
|
||||
sidebar_custom_props:
|
||||
type: web
|
||||
sql: true
|
||||
---
|
||||
|
||||
WebSQL is a popular SQL-based in-browser database available on Chrome. In
|
||||
practice, it is powered by SQLite, and most simple SQLite-compatible queries
|
||||
work as-is in WebSQL.
|
||||
|
||||
The public demo <https://sheetjs.com/sql> generates a database from workbook.
|
||||
|
||||
## WebSQL Details
|
||||
|
||||
Importing data from spreadsheets is straightforward using the `generate_sql`
|
||||
helper function from ["Generating Tables"](/docs/demos/data/sql#generating-tables):
|
||||
|
||||
```js
|
||||
const db = openDatabase('sheetql', '1.0', 'SheetJS WebSQL Test', 2097152);
|
||||
const stmts = generate_sql(ws, wsname);
|
||||
// NOTE: tx.executeSql and db.transaction use callbacks. This wraps in Promises
|
||||
for(var i = 0; i < stmts.length; ++i) await new Promise((res, rej) => {
|
||||
db.transaction(tx =>
|
||||
tx.executeSql(stmts[i], [],
|
||||
(tx, data) => res(data), // if the query is successful, return the data
|
||||
(tx, err) => rej(err) // if the query fails, reject with the error
|
||||
));
|
||||
});
|
||||
```
|
||||
|
||||
The result of a SQL SELECT statement is a `SQLResultSet`. The `rows` property
|
||||
is a `SQLResultSetRowList`. It is an "array-like" structure that has `length`
|
||||
and properties like `0`, `1`, etc. However, this is not a real Array object.
|
||||
A real Array can be created using `Array.from`:
|
||||
|
||||
```js
|
||||
const db = openDatabase('sheetql', '1.0', 'SheetJS WebSQL Test', 2097152);
|
||||
db.readTransaction(tx =>
|
||||
tx.executeSQL("SELECT * FROM DatabaseTable", [], (tx, data) => {
|
||||
// data.rows is "array-like", so `Array.from` can make it a real array
|
||||
const aoo = Array.from(data.rows);
|
||||
const ws = XLSX.utils.json_to_sheet(aoo);
|
||||
// ... it is recommended to perform an export here OR wrap in a Promise
|
||||
})
|
||||
);
|
||||
```
|
||||
|
||||
### Live Demo
|
||||
|
||||
The following demo generates a database with 5 fixed SQL statements. Queries
|
||||
can be changed in the Live Editor. The WebSQL database can be inspected in the
|
||||
"WebSQL" section of the "Application" Tab of Developer Tools:
|
||||
|
||||
![WebSQL view in Developer Tools](pathname:///files/websql.png)
|
||||
|
||||
```jsx live
|
||||
function SheetQL() {
|
||||
const [out, setOut] = React.useState("");
|
||||
const queries = [
|
||||
'DROP TABLE IF EXISTS Presidents',
|
||||
'CREATE TABLE Presidents (Name TEXT, Idx REAL)',
|
||||
'INSERT INTO Presidents (Name, Idx) VALUES ("Barack Obama", 44)',
|
||||
'INSERT INTO Presidents (Name, Idx) VALUES ("Donald Trump", 45)',
|
||||
'INSERT INTO Presidents (Name, Idx) VALUES ("Joseph Biden", 46)'
|
||||
];
|
||||
const xport = React.useCallback(async() => {
|
||||
// prep database
|
||||
const db = openDatabase('sheetql', '1.0', 'SheetJS WebSQL Test', 2097152);
|
||||
|
||||
for(var i = 0; i < queries.length; ++i) await new Promise((res, rej) => {
|
||||
db.transaction((tx) => {
|
||||
tx.executeSql(queries[i], [], (tx, data) => res(data), (tx, err) => rej(err));
|
||||
});
|
||||
});
|
||||
|
||||
// pull data and generate rows
|
||||
db.readTransaction(tx => {
|
||||
tx.executeSql("SELECT * FROM Presidents", [], (tx, data) => {
|
||||
const aoo = Array.from(data.rows);
|
||||
setOut("QUERY RESULT:\n" + aoo.map(r => JSON.stringify(r)).join("\n") + "\n")
|
||||
const ws = XLSX.utils.json_to_sheet(aoo);
|
||||
const wb = XLSX.utils.book_new();
|
||||
XLSX.utils.book_append_sheet(wb, ws, "Presidents");
|
||||
XLSX.writeFile(wb, "SheetQL.xlsx");
|
||||
});
|
||||
});
|
||||
});
|
||||
return ( <pre>{out}<button onClick={xport}><b>Fetch!</b></button></pre> );
|
||||
}
|
||||
```
|
||||
|
||||
## Server-Side SQLite
|
||||
|
||||
Most platforms offer a simple way to query SQLite database files.
|
||||
|
||||
The following example shows how to query for each table in an SQLite database,
|
||||
query for the data for each table, add each non-empty table to a workbook, and
|
||||
export as XLSX.
|
||||
|
||||
[The Northwind database is available in SQLite form](https://raw.githubusercontent.com/jpwhite3/northwind-SQLite3/master/dist/northwind.db).
|
||||
|
||||
### NodeJS
|
||||
|
||||
The **`better-sqlite3`** module provides a very simple API for working with
|
||||
SQLite databases. `Statement#all` runs a prepared statement and returns an array
|
||||
of JS objects.
|
||||
|
||||
1) Install the dependencies:
|
||||
|
||||
```bash
|
||||
npm i --save https://cdn.sheetjs.com/xlsx-latest/xlsx-latest.tgz better-sqlite3
|
||||
```
|
||||
|
||||
2) Save the following to `node.mjs`:
|
||||
|
||||
```js title="node.mjs"
|
||||
/* Load SQLite3 connector library */
|
||||
import Database from "better-sqlite3";
|
||||
|
||||
/* Load SheetJS library */
|
||||
import * as XLSX from 'xlsx';
|
||||
import * as fs from 'fs';
|
||||
XLSX.set_fs(fs);
|
||||
|
||||
/* Initialize database */
|
||||
var db = Database("northwind.db");
|
||||
|
||||
/* Create new workbook */
|
||||
var wb = XLSX.utils.book_new();
|
||||
|
||||
/* Get list of table names */
|
||||
var sql = db.prepare("SELECT name FROM sqlite_master WHERE type='table'");
|
||||
var result = sql.all();
|
||||
|
||||
/* Loop across each name */
|
||||
result.forEach(function(row) {
|
||||
/* Get first 100K rows */
|
||||
var aoo = db.prepare("SELECT * FROM '" + row.name + "' LIMIT 100000").all();
|
||||
if(aoo.length > 0) {
|
||||
/* Create Worksheet from the row objects */
|
||||
var ws = XLSX.utils.json_to_sheet(aoo, {dense: true});
|
||||
/* Add to Workbook */
|
||||
XLSX.utils.book_append_sheet(wb, ws, row.name);
|
||||
}
|
||||
});
|
||||
|
||||
/* Write File */
|
||||
XLSX.writeFile(wb, "node.xlsx");
|
||||
```
|
||||
|
||||
3) Run `node node.mjs` and open `node.xlsx`
|
||||
|
||||
### Bun
|
||||
|
||||
Bun ships with a built-in high-performance module `bun:sqlite`.
|
||||
|
||||
1) Install the dependencies:
|
||||
|
||||
```bash
|
||||
npm i --save https://cdn.sheetjs.com/xlsx-latest/xlsx-latest.tgz
|
||||
```
|
||||
|
||||
2) Save the following to `bun.mjs`:
|
||||
|
||||
```js title="bun.mjs"
|
||||
/* Load SQLite3 connector library */
|
||||
import { Database } from "bun:sqlite";
|
||||
|
||||
/* Load SheetJS library */
|
||||
import * as XLSX from 'xlsx';
|
||||
import * as fs from 'fs';
|
||||
XLSX.set_fs(fs);
|
||||
|
||||
/* Initialize database */
|
||||
var db = Database.open("northwind.db");
|
||||
|
||||
/* Create new workbook */
|
||||
var wb = XLSX.utils.book_new();
|
||||
|
||||
/* Get list of table names */
|
||||
var sql = db.prepare("SELECT name FROM sqlite_master WHERE type='table'");
|
||||
var result = sql.all();
|
||||
|
||||
/* Loop across each name */
|
||||
result.forEach(function(row) {
|
||||
/* Get first 100K rows */
|
||||
var aoo = db.prepare("SELECT * FROM '" + row.name + "' LIMIT 100000").all();
|
||||
if(aoo.length > 0) {
|
||||
/* Create Worksheet from the row objects */
|
||||
var ws = XLSX.utils.json_to_sheet(aoo, {dense: true});
|
||||
/* Add to Workbook */
|
||||
XLSX.utils.book_append_sheet(wb, ws, row.name);
|
||||
}
|
||||
});
|
||||
|
||||
/* Write File */
|
||||
XLSX.writeFile(wb, "bun.xlsx");
|
||||
```
|
||||
|
||||
3) Run `bun bun.mjs` and open `bun.xlsx`
|
||||
|
||||
### Deno
|
||||
|
||||
Deno `sqlite` library returns raw arrays of arrays.
|
||||
|
||||
1) Save the following to `deno.ts`:
|
||||
|
||||
```ts title="deno.ts"
|
||||
/* Load SQLite3 connector library */
|
||||
import { DB } from "https://deno.land/x/sqlite/mod.ts";
|
||||
|
||||
/* Load SheetJS library */
|
||||
// @deno-types="https://cdn.sheetjs.com/xlsx-latest/package/types/index.d.ts"
|
||||
import * as XLSX from 'https://cdn.sheetjs.com/xlsx-latest/package/xlsx.mjs';
|
||||
|
||||
/* Initialize database */
|
||||
var db = new DB("northwind.db");
|
||||
|
||||
/* Create new workbook */
|
||||
var wb = XLSX.utils.book_new();
|
||||
|
||||
/* Get list of table names */
|
||||
var sql = db.prepareQuery("SELECT name FROM sqlite_master WHERE type='table'");
|
||||
var result = sql.all();
|
||||
/* Loop across each name */
|
||||
result.forEach(function(row) {
|
||||
/* Get first 100K rows */
|
||||
var query = db.prepareQuery("SELECT * FROM '" + row[0] + "' LIMIT 100000")
|
||||
var aoa = query.all();
|
||||
if(aoa.length > 0) {
|
||||
/* Create array of arrays */
|
||||
var data = [query.columns().map(x => x.name)].concat(aoa);
|
||||
/* Create Worksheet from the aoa */
|
||||
var ws = XLSX.utils.aoa_to_sheet(data, {dense: true});
|
||||
/* Add to Workbook */
|
||||
XLSX.utils.book_append_sheet(wb, ws, row[0]);
|
||||
}
|
||||
});
|
||||
|
||||
/* Write File */
|
||||
XLSX.writeFile(wb, "deno.xlsx");
|
||||
```
|
||||
|
||||
3) Run `deno run --allow-read --allow-write deno.ts` and open `deno.xlsx`
|
73
docz/docs/03-demos/06-data/02-storageapi.md
Normal file
73
docz/docs/03-demos/06-data/02-storageapi.md
Normal file
@ -0,0 +1,73 @@
|
||||
---
|
||||
title: Local Storage API
|
||||
pagination_prev: demos/grid
|
||||
pagination_next: demos/worker
|
||||
sidebar_custom_props:
|
||||
type: web
|
||||
---
|
||||
|
||||
The Storage API, encompassing `localStorage` and `sessionStorage`, describes
|
||||
simple key-value stores that only support string values and keys.
|
||||
|
||||
Arrays of objects can be stored using `JSON.stringify` using row index as key:
|
||||
|
||||
```js
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
for(var i = 0; i < aoo.length; ++i) localStorage.setItem(i, JSON.stringify(aoo[i]));
|
||||
```
|
||||
|
||||
Recovering the array of objects is possible by using `JSON.parse`:
|
||||
|
||||
```js
|
||||
const aoo = [];
|
||||
for(var i = 0; i < localStorage.length; ++i) aoo.push(JSON.parse(localStorage.getItem(i)));
|
||||
const ws = XLSX.utils.json_to_sheet(aoo);
|
||||
```
|
||||
|
||||
This example will fetch <https://sheetjs.com/data/cd.xls>, fill `localStorage` with
|
||||
rows, then generate a worksheet from the rows and write to a new file.
|
||||
|
||||
:::caution
|
||||
|
||||
This example is for illustration purposes. If array of objects is available, it
|
||||
is strongly recommended to convert that array to a worksheet directly.
|
||||
|
||||
:::
|
||||
|
||||
```jsx live
|
||||
function SheetJStorage() {
|
||||
const [url, setUrl] = React.useState("https://sheetjs.com/data/cd.xls");
|
||||
const set_url = React.useCallback((evt) => setUrl(evt.target.value));
|
||||
const [out, setOut] = React.useState("");
|
||||
const xport = React.useCallback(async() => {
|
||||
// get first worksheet data as array of objects
|
||||
const ab = await (await fetch(url)).arrayBuffer();
|
||||
const wb = XLSX.read(ab), wsname = wb.SheetNames[0];
|
||||
const aoo = XLSX.utils.sheet_to_json(wb.Sheets[wsname]);
|
||||
|
||||
// reset and populate localStorage
|
||||
localStorage.clear();
|
||||
for(var i = 0; i < aoo.length; ++i) localStorage.setItem(i, JSON.stringify(aoo[i]));
|
||||
|
||||
// create new array of objects from localStorage
|
||||
const new_aoo = [];
|
||||
for(var i = 0; i < localStorage.length; ++i) {
|
||||
const row = JSON.parse(localStorage.getItem(i));
|
||||
new_aoo.push(row);
|
||||
}
|
||||
|
||||
setOut(`Number of rows in LocalStorage: ${localStorage.length}`);
|
||||
|
||||
// create and export workbook
|
||||
const new_ws = XLSX.utils.json_to_sheet(new_aoo);
|
||||
const new_wb = XLSX.utils.book_new();
|
||||
XLSX.utils.book_append_sheet(new_wb, new_ws, "Sheet1");
|
||||
XLSX.writeFile(new_wb, "SheetJStorage.xlsx");
|
||||
});
|
||||
|
||||
return ( <> {out && (<><a href={url}>{url}</a><pre>{out}</pre></>)}
|
||||
<b>URL: </b><input type="text" value={url} onChange={set_url} size="50"/>
|
||||
<br/><button onClick={xport}><b>Fetch!</b></button>
|
||||
</> );
|
||||
}
|
||||
```
|
31
docz/docs/03-demos/06-data/03-indexeddb.md
Normal file
31
docz/docs/03-demos/06-data/03-indexeddb.md
Normal file
@ -0,0 +1,31 @@
|
||||
---
|
||||
title: IndexedDB API
|
||||
pagination_prev: demos/grid
|
||||
pagination_next: demos/worker
|
||||
sidebar_custom_props:
|
||||
type: web
|
||||
---
|
||||
|
||||
:::warning
|
||||
|
||||
IndexedDB is a very low-level API. It is strongly recommended to use a wrapper
|
||||
library or [WebSQL](/docs/demos/data/websql) in production applications.
|
||||
|
||||
:::
|
||||
|
||||
`localForage` is a IndexedDB wrapper that presents an async Storage interface.
|
||||
|
||||
Arrays of objects can be stored using `JSON.stringify` using row index as key:
|
||||
|
||||
```js
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
for(var i = 0; i < aoo.length; ++i) await localForage.setItem(i, JSON.stringify(aoo[i]));
|
||||
```
|
||||
|
||||
Recovering the array of objects is possible by using `JSON.parse`:
|
||||
|
||||
```js
|
||||
const aoo = [];
|
||||
for(var i = 0; i < localForage.length; ++i) aoo.push(JSON.parse(await localForage.getItem(i)));
|
||||
const wb = XLSX.utils.json_to_sheet(aoo);
|
||||
```
|
161
docz/docs/03-demos/06-data/09-alasql.md
Normal file
161
docz/docs/03-demos/06-data/09-alasql.md
Normal file
@ -0,0 +1,161 @@
|
||||
---
|
||||
title: AlaSQL
|
||||
pagination_prev: demos/grid
|
||||
pagination_next: demos/worker
|
||||
sidebar_custom_props:
|
||||
sql: true
|
||||
---
|
||||
|
||||
import current from '/version.js';
|
||||
|
||||
AlaSQL is a pure JavaScript in-memory SQL database. It has built-in support for
|
||||
SheetJS through the `XLSX` target operator.
|
||||
|
||||
This demo covers basic concepts pertaining to data import and export. The
|
||||
official documentation includes advanced examples and deployment tips as well as
|
||||
strategies for general data processing in AlaSQL expressions.
|
||||
|
||||
## NodeJS Usage
|
||||
|
||||
:::caution
|
||||
|
||||
`alasql` uses an older version of the library. It can be overridden through a
|
||||
`package.json` override in the latest versions of NodeJS:
|
||||
|
||||
<pre><code parentName="pre" {...{"className": "language-json"}}>{`\
|
||||
{
|
||||
"overrides": {
|
||||
"xlsx": "https://cdn.sheetjs.com/xlsx-${current}/xlsx-${current}.tgz"
|
||||
}
|
||||
}`}
|
||||
</code></pre>
|
||||
|
||||
:::
|
||||
|
||||
#### Reading Files
|
||||
|
||||
By default, the `XLSX` "from" target automatically adds a `.xlsx` extension. To
|
||||
read files with an arbitrary filename, the `autoExt: false` option should be
|
||||
passed as the second argument:
|
||||
|
||||
```sql
|
||||
SELECT `Name`, `Index` FROM XLSX(
|
||||
"pres.numbers" --<< filename is "pres.numbers"
|
||||
// highlight-start
|
||||
, { --<< options are supplied as the second argument to XLSX operator
|
||||
autoExt: false --<< do not automatically add ".xlsx" extension!
|
||||
}
|
||||
// highlight-end
|
||||
) WHERE `Index` < 45
|
||||
```
|
||||
|
||||
By default the workbook is parsed and `sheet_to_json` is used to pull data:
|
||||
|
||||
```js
|
||||
const { promise: alasql } = require("alasql");
|
||||
|
||||
(async() => {
|
||||
const aoo = await alasql(`SELECT * from XLSX("pres.xlsb", {autoExt: false})`);
|
||||
console.log(aoo); // [ { Name: "Bill Clinton", Index: 42 }, ...]
|
||||
})();
|
||||
```
|
||||
|
||||
#### Writing Files
|
||||
|
||||
The `XLSX` "into" target calls `XLSX.writeFile` under the hood:
|
||||
|
||||
```js
|
||||
const { promise: alasql } = require("alasql");
|
||||
|
||||
(async() => {
|
||||
const data = [
|
||||
{ Name: "Bill Clinton", Index: 42 },
|
||||
{ Name: "Someone Else", Index: 47 }
|
||||
];
|
||||
await alasql(`SELECT * INTO XLSX("PresMod5.xlsb") FROM ?`, [data]);
|
||||
/* PresMod5.xlsb will be created */
|
||||
})();
|
||||
```
|
||||
|
||||
### NodeJS Example
|
||||
|
||||
:::note
|
||||
|
||||
This demo was tested on 2023 February 23 against AlaSQL 3.1.0
|
||||
|
||||
:::
|
||||
|
||||
1) Create an empty folder for the project:
|
||||
|
||||
```bash
|
||||
mkdir alasql
|
||||
cd alasql
|
||||
```
|
||||
|
||||
2) In the folder, create a stub `package.json` with the `xlsx` override:
|
||||
|
||||
```json title="package.json"
|
||||
{
|
||||
"overrides": {
|
||||
"xlsx": "https://cdn.sheetjs.com/xlsx-latest/xlsx-latest.tgz"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
3) Install SheetJS and AlaSQL:
|
||||
|
||||
```bash
|
||||
npm i --save alasql@3.1.0 https://cdn.sheetjs.com/xlsx-latest/xlsx-latest.tgz
|
||||
```
|
||||
|
||||
4) Download the test file <https://sheetjs.com/pres.numbers> :
|
||||
|
||||
```bash
|
||||
curl -LO https://sheetjs.com/pres.numbers
|
||||
```
|
||||
|
||||
5) Save the following test script to `SheetJSAlaSQL.js`:
|
||||
|
||||
```js title="SheetJSAlaSQL.js"
|
||||
const { promise: alasql } = require("alasql");
|
||||
|
||||
(async() => {
|
||||
/* read data from spreadsheet to JS */
|
||||
const data = await alasql(`
|
||||
SELECT \`Name\`, \`Index\`
|
||||
FROM XLSX("pres.numbers", {autoExt:false})
|
||||
WHERE \`Index\` < 45
|
||||
`);
|
||||
console.log(data);
|
||||
|
||||
/* write data from JS to spreadsheet */
|
||||
data.push({Name: "Someone Else", Index: 47});
|
||||
await alasql(`SELECT * INTO XLSX("SheetJSAlaSQL1.xlsx") FROM ?`, [data]);
|
||||
})();
|
||||
```
|
||||
|
||||
6) Run the test script
|
||||
|
||||
```bash
|
||||
node SheetJSAlaSQL.js
|
||||
```
|
||||
|
||||
The output should display:
|
||||
|
||||
```
|
||||
[
|
||||
{ Name: 'Bill Clinton', Index: 42 },
|
||||
{ Name: 'GeorgeW Bush', Index: 43 },
|
||||
{ Name: 'Barack Obama', Index: 44 }
|
||||
]
|
||||
```
|
||||
|
||||
The script should generate `SheetJSAlaSQL1.xlsx` with the additional row:
|
||||
|
||||
```csv
|
||||
Name,Index
|
||||
Bill Clinton,42
|
||||
GeorgeW Bush,43
|
||||
Barack Obama,44
|
||||
Someone Else,47
|
||||
```
|
307
docz/docs/03-demos/06-data/10-sql.md
Normal file
307
docz/docs/03-demos/06-data/10-sql.md
Normal file
@ -0,0 +1,307 @@
|
||||
---
|
||||
title: SQL Connectors
|
||||
pagination_prev: demos/grid
|
||||
pagination_next: demos/worker
|
||||
sidebar_custom_props:
|
||||
sql: true
|
||||
---
|
||||
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
### Generating Tables
|
||||
|
||||
This example will fetch <https://sheetjs.com/data/cd.xls>, scan the columns of the
|
||||
first worksheet to determine data types, and generate 6 PostgreSQL statements.
|
||||
|
||||
<details><summary><b>Explanation</b> (click to show)</summary>
|
||||
|
||||
The relevant `generate_sql` function takes a worksheet name and a table name:
|
||||
|
||||
```js
|
||||
// define mapping between determined types and PostgreSQL types
|
||||
const PG = { "n": "float8", "s": "text", "b": "boolean" };
|
||||
|
||||
function generate_sql(ws, wsname) {
|
||||
|
||||
// generate an array of objects from the data
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
|
||||
// types will map column headers to types, while hdr holds headers in order
|
||||
const types = {}, hdr = [];
|
||||
|
||||
// loop across each row object
|
||||
aoo.forEach(row =>
|
||||
// Object.entries returns a row of [key, value] pairs. Loop across those
|
||||
Object.entries(row).forEach(([k,v]) => {
|
||||
|
||||
// If this is first time seeing key, mark unknown and append header array
|
||||
if(!types[k]) { types[k] = "?"; hdr.push(k); }
|
||||
|
||||
// skip null and undefined
|
||||
if(v == null) return;
|
||||
|
||||
// check and resolve type
|
||||
switch(typeof v) {
|
||||
case "string": // strings are the broadest type
|
||||
types[k] = "s"; break;
|
||||
case "number": // if column is not string, number is the broadest type
|
||||
if(types[k] != "s") types[k] = "n"; break;
|
||||
case "boolean": // only mark boolean if column is unknown or boolean
|
||||
if("?b".includes(types[k])) types[k] = "b"; break;
|
||||
default: types[k] = "s"; break; // default to string type
|
||||
}
|
||||
})
|
||||
);
|
||||
|
||||
// The final array consists of the CREATE TABLE query and a series of INSERTs
|
||||
return [
|
||||
// generate CREATE TABLE query and return batch
|
||||
`CREATE TABLE \`${wsname}\` (${hdr.map(h =>
|
||||
// column name must be wrapped in backticks
|
||||
`\`${h}\` ${PG[types[h]]}`
|
||||
).join(", ")});`
|
||||
].concat(aoo.map(row => { // generate INSERT query for each row
|
||||
// entries will be an array of [key, value] pairs for the data in the row
|
||||
const entries = Object.entries(row);
|
||||
// fields will hold the column names and values will hold the values
|
||||
const fields = [], values = [];
|
||||
// check each key/value pair in the row
|
||||
entries.forEach(([k,v]) => {
|
||||
// skip null / undefined
|
||||
if(v == null) return;
|
||||
// column name must be wrapped in backticks
|
||||
fields.push(`\`${k}\``);
|
||||
// when the field type is numeric, `true` -> 1 and `false` -> 0
|
||||
if(types[k] == "n") values.push(typeof v == "boolean" ? (v ? 1 : 0) : v);
|
||||
// otherwise,
|
||||
else values.push(`'${v.toString().replaceAll("'", "''")}'`);
|
||||
})
|
||||
if(fields.length) return `INSERT INTO \`${wsname}\` (${fields.join(", ")}) VALUES (${values.join(", ")})`;
|
||||
})).filter(x => x); // filter out skipped rows
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
```jsx live
|
||||
function SheetJSQLWriter() {
|
||||
// define mapping between determined types and PostgreSQL types
|
||||
const PG = { "n": "float8", "s": "text", "b": "boolean" };
|
||||
function generate_sql(ws, wsname) {
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
const types = {}, hdr = [];
|
||||
// loop across each key in each column
|
||||
aoo.forEach(row => Object.entries(row).forEach(([k,v]) => {
|
||||
// set up type if header hasn't been seen
|
||||
if(!types[k]) { types[k] = "?"; hdr.push(k); }
|
||||
// check and resolve type
|
||||
switch(typeof v) {
|
||||
case "string": types[k] = "s"; break;
|
||||
case "number": if(types[k] != "s") types[k] = "n"; break;
|
||||
case "boolean": if("?b".includes(types[k])) types[k] = "b"; break;
|
||||
default: types[k] = "s"; break;
|
||||
}
|
||||
}));
|
||||
return [
|
||||
// generate CREATE TABLE query and return batch
|
||||
`CREATE TABLE \`${wsname}\` (${hdr.map(h => `\`${h}\` ${PG[types[h]]}`).join(", ")});`
|
||||
].concat(aoo.map(row => {
|
||||
const entries = Object.entries(row);
|
||||
const fields = [], values = [];
|
||||
entries.forEach(([k,v]) => {
|
||||
if(v == null) return;
|
||||
fields.push(`\`${k}\``);
|
||||
if(types[k] == "n") values.push(typeof v == "boolean" ? (v ? 1 : 0) : v);
|
||||
else values.push(`'${v.toString().replaceAll("'", "''")}'`);
|
||||
})
|
||||
if(fields.length) return `INSERT INTO \`${wsname}\` (${fields.join(", ")}) VALUES (${values.join(", ")})`;
|
||||
})).filter(x => x).slice(0, 6);
|
||||
}
|
||||
const [url, setUrl] = React.useState("https://sheetjs.com/data/cd.xls");
|
||||
const set_url = React.useCallback((evt) => setUrl(evt.target.value));
|
||||
const [out, setOut] = React.useState("");
|
||||
const xport = React.useCallback(async() => {
|
||||
const ab = await (await fetch(url)).arrayBuffer();
|
||||
const wb = XLSX.read(ab), wsname = wb.SheetNames[0];
|
||||
setOut(generate_sql(wb.Sheets[wsname], wsname).join("\n"));
|
||||
});
|
||||
|
||||
return ( <> {out && (<><a href={url}>{url}</a><pre>{out}</pre></>)}
|
||||
<b>URL: </b><input type="text" value={url} onChange={set_url} size="50"/>
|
||||
<br/><button onClick={xport}><b>Fetch!</b></button>
|
||||
</> );
|
||||
}
|
||||
```
|
||||
|
||||
## Databases
|
||||
|
||||
### Query Builders
|
||||
|
||||
Query builders are designed to simplify query generation and normalize field
|
||||
types and other database minutiae.
|
||||
|
||||
**Knex**
|
||||
|
||||
The result of a `SELECT` statement is an array of objects:
|
||||
|
||||
```js
|
||||
const aoo = await connection.select("*").from("DataTable");
|
||||
const worksheet = XLSX.utils.json_to_sheet(aoa);
|
||||
```
|
||||
|
||||
Knex wraps primitive types when creating a table. `generate_sql` takes a `knex`
|
||||
connection object and uses the API:
|
||||
|
||||
<details><summary><b>Generating a Table</b> (click to show)</summary>
|
||||
|
||||
```js
|
||||
// define mapping between determined types and Knex types
|
||||
const PG = { "n": "float", "s": "text", "b": "boolean" };
|
||||
|
||||
async function generate_sql(knex, ws, wsname) {
|
||||
|
||||
// generate an array of objects from the data
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
|
||||
// types will map column headers to types, while hdr holds headers in order
|
||||
const types = {}, hdr = [];
|
||||
|
||||
// loop across each row object
|
||||
aoo.forEach(row =>
|
||||
// Object.entries returns a row of [key, value] pairs. Loop across those
|
||||
Object.entries(row).forEach(([k,v]) => {
|
||||
|
||||
// If this is first time seeing key, mark unknown and append header array
|
||||
if(!types[k]) { types[k] = "?"; hdr.push(k); }
|
||||
|
||||
// skip null and undefined
|
||||
if(v == null) return;
|
||||
|
||||
// check and resolve type
|
||||
switch(typeof v) {
|
||||
case "string": // strings are the broadest type
|
||||
types[k] = "s"; break;
|
||||
case "number": // if column is not string, number is the broadest type
|
||||
if(types[k] != "s") types[k] = "n"; break;
|
||||
case "boolean": // only mark boolean if column is unknown or boolean
|
||||
if("?b".includes(types[k])) types[k] = "b"; break;
|
||||
default: types[k] = "s"; break; // default to string type
|
||||
}
|
||||
})
|
||||
);
|
||||
|
||||
await knex.schema.dropTableIfExists(wsname);
|
||||
await knex.schema.createTable(wsname, (table) => { hdr.forEach(h => { table[PG[types[h]] || "text"](h); }); });
|
||||
for(let i = 0; i < aoo.length; ++i) {
|
||||
if(!aoo[i] || !Object.keys(aoo[i]).length) continue;
|
||||
try { await knex.insert(aoo[i]).into(wsname); } catch(e) {}
|
||||
}
|
||||
return knex;
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
### Other SQL Databases
|
||||
|
||||
The `generate_sql` function from ["Building Schemas from Worksheets"](#building-schemas-from-worksheets)
|
||||
can be adapted to generate SQL statements for a variety of databases, including:
|
||||
|
||||
**PostgreSQL**
|
||||
|
||||
The `pg` connector library was tested against the `generate_sql` output as-is.
|
||||
|
||||
The `rows` property of a query result is an array of objects that plays nice
|
||||
with `json_to_sheet`:
|
||||
|
||||
```js
|
||||
const aoa = await connection.query(`SELECT * FROM DataTable`).rows;
|
||||
const worksheet = XLSX.utils.json_to_sheet(aoa);
|
||||
```
|
||||
|
||||
**MySQL / MariaDB**
|
||||
|
||||
The `mysql2` connector library was tested. The differences are shown below,
|
||||
primarily stemming from the different quoting requirements and field types.
|
||||
|
||||
<details><summary><b>Differences</b> (click to show)</summary>
|
||||
|
||||
```js
|
||||
// highlight-start
|
||||
// define mapping between determined types and MySQL types
|
||||
const PG = { "n": "REAL", "s": "TEXT", "b": "TINYINT" };
|
||||
// highlight-end
|
||||
|
||||
function generate_sql(ws, wsname) {
|
||||
|
||||
// generate an array of objects from the data
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
|
||||
// types will map column headers to types, while hdr holds headers in order
|
||||
const types = {}, hdr = [];
|
||||
|
||||
// loop across each row object
|
||||
aoo.forEach(row =>
|
||||
// Object.entries returns a row of [key, value] pairs. Loop across those
|
||||
Object.entries(row).forEach(([k,v]) => {
|
||||
|
||||
// If this is first time seeing key, mark unknown and append header array
|
||||
if(!types[k]) { types[k] = "?"; hdr.push(k); }
|
||||
|
||||
// skip null and undefined
|
||||
if(v == null) return;
|
||||
|
||||
// check and resolve type
|
||||
switch(typeof v) {
|
||||
case "string": // strings are the broadest type
|
||||
types[k] = "s"; break;
|
||||
case "number": // if column is not string, number is the broadest type
|
||||
if(types[k] != "s") types[k] = "n"; break;
|
||||
case "boolean": // only mark boolean if column is unknown or boolean
|
||||
if("?b".includes(types[k])) types[k] = "b"; break;
|
||||
default: types[k] = "s"; break; // default to string type
|
||||
}
|
||||
})
|
||||
);
|
||||
|
||||
// The final array consists of the CREATE TABLE query and a series of INSERTs
|
||||
return [
|
||||
// generate CREATE TABLE query and return batch
|
||||
// highlight-next-line
|
||||
`CREATE TABLE ${wsname} (${hdr.map(h =>
|
||||
// highlight-next-line
|
||||
`${h} ${PG[types[h]]}`
|
||||
).join(", ")});`
|
||||
].concat(aoo.map(row => { // generate INSERT query for each row
|
||||
// entries will be an array of [key, value] pairs for the data in the row
|
||||
const entries = Object.entries(row);
|
||||
// fields will hold the column names and values will hold the values
|
||||
const fields = [], values = [];
|
||||
// check each key/value pair in the row
|
||||
entries.forEach(([k,v]) => {
|
||||
// skip null / undefined
|
||||
if(v == null) return;
|
||||
// highlight-next-line
|
||||
fields.push(`${k}`);
|
||||
// when the field type is numeric, `true` -> 1 and `false` -> 0
|
||||
if(types[k] == "n") values.push(typeof v == "boolean" ? (v ? 1 : 0) : v);
|
||||
// otherwise,
|
||||
// highlight-next-line
|
||||
else values.push(`"${v.toString().replaceAll('"', '""')}"`);
|
||||
})
|
||||
if(fields.length) return `INSERT INTO \`${wsname}\` (${fields.join(", ")}) VALUES (${values.join(", ")})`;
|
||||
})).filter(x => x); // filter out skipped rows
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
The first property of a query result is an array of objects that plays nice
|
||||
with `json_to_sheet`:
|
||||
|
||||
```js
|
||||
const aoa = await connection.query(`SELECT * FROM DataTable`)[0];
|
||||
const worksheet = XLSX.utils.json_to_sheet(aoa);
|
||||
```
|
127
docz/docs/03-demos/06-data/25-mongodb.md
Normal file
127
docz/docs/03-demos/06-data/25-mongodb.md
Normal file
@ -0,0 +1,127 @@
|
||||
---
|
||||
title: MongoDB
|
||||
pagination_prev: demos/grid
|
||||
pagination_next: demos/worker
|
||||
sidebar_custom_props:
|
||||
type: document
|
||||
---
|
||||
|
||||
MongoDB is a popular document-oriented database engine.
|
||||
|
||||
It is straightforward to treat collections as worksheets. Each object maps to
|
||||
a row in the table.
|
||||
|
||||
## Integration Details
|
||||
|
||||
The official NodeJS connector is `mongodb`.
|
||||
|
||||
#### Importing Data
|
||||
|
||||
Data stored in an array of objects can be added to MongoDB Collections using
|
||||
`Collection#insertMany`. `sheet_to_json` can generate data from worksheets:
|
||||
|
||||
```js
|
||||
/* import data from a worksheet to a collection */
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
await collection.insertMany(aoo, {ordered: true});
|
||||
```
|
||||
#### Exporting Data
|
||||
|
||||
`Collection#find` can pull an array of objects from a Mongo Collection.
|
||||
|
||||
Normally the method adds a `_id` field to each object. The recommended way to
|
||||
remove the field is to use a `projection` to suppress the ID:
|
||||
|
||||
```js
|
||||
/* generate an array of objects from a collection */
|
||||
const aoo = await collection.find({}, {projection:{_id:0}}).toArray();
|
||||
```
|
||||
|
||||
Worksheets can be generated from the result using `json_to_sheet`:
|
||||
|
||||
```js
|
||||
/* generate a worksheet from a collection */
|
||||
const aoo = await collection.find({}, {projection:{_id:0}}).toArray();
|
||||
const ws = utils.json_to_sheet(aoo);
|
||||
```
|
||||
|
||||
## Complete Example
|
||||
|
||||
:::note
|
||||
|
||||
This demo was last tested on 2023 February 23 with MongoDB CE 6.0.4, MongoDB
|
||||
connector module 5.1.0 and NodeJS 18.14.2.
|
||||
|
||||
:::
|
||||
|
||||
0) Install MongoDB 6.0 Community Edition. The macOS steps required `brew`:
|
||||
|
||||
```bash
|
||||
brew tap mongodb/brew
|
||||
brew update
|
||||
brew install mongodb-community@6.0
|
||||
```
|
||||
|
||||
1) Start a MongoDB server on `localhost` (follow official instructions). To run
|
||||
in the foreground on Intel MacOS:
|
||||
|
||||
```bash
|
||||
/usr/local/opt/mongodb-community/bin/mongod --config /usr/local/etc/mongod.conf
|
||||
```
|
||||
|
||||
2) Create base project and install the dependencies:
|
||||
|
||||
```bash
|
||||
mkdir sheetjs-mongo
|
||||
cd sheetjs-mongo
|
||||
npm init -y
|
||||
npm i --save https://cdn.sheetjs.com/xlsx-latest/xlsx-latest.tgz mongodb@5.1.0
|
||||
```
|
||||
|
||||
3) Save the following to `SheetJSMongoCRUD.mjs` (the key step is highlighted):
|
||||
|
||||
```js title="SheetJSMongoCRUD.mjs"
|
||||
import { writeFile, set_fs, utils } from 'xlsx';
|
||||
import * as fs from 'fs'; set_fs(fs);
|
||||
import { MongoClient } from 'mongodb';
|
||||
|
||||
const url = 'mongodb://localhost:27017/sheetjs';
|
||||
const db_name = 'sheetjs';
|
||||
|
||||
/* Connect to mongodb server */
|
||||
const client = await MongoClient.connect(url, { useUnifiedTopology: true });
|
||||
|
||||
/* Sample data table */
|
||||
const db = client.db(db_name);
|
||||
try { await db.collection('pres').drop(); } catch(e) {}
|
||||
const pres = db.collection('pres');
|
||||
await pres.insertMany([
|
||||
{ name: "Barack Obama", idx: 44 },
|
||||
{ name: "Donald Trump", idx: 45 },
|
||||
{ name: "Joseph Biden", idx: 46 }
|
||||
], {ordered: true});
|
||||
|
||||
// highlight-start
|
||||
/* Create worksheet from collection */
|
||||
const aoo = await pres.find({}, {projection:{_id:0}}).toArray();
|
||||
const ws = utils.json_to_sheet(aoo);
|
||||
// highlight-end
|
||||
|
||||
/* Export to XLSX */
|
||||
const wb = utils.book_new();
|
||||
utils.book_append_sheet(wb, ws, "Presidents");
|
||||
writeFile(wb, "SheetJSMongoCRUD.xlsx");
|
||||
|
||||
/* Close connection */
|
||||
client.close();
|
||||
```
|
||||
|
||||
This script:
|
||||
|
||||
- connects to the local MongoDB server using database `sheetjs`
|
||||
- removes the `pres` collection if it already exists
|
||||
- creates a new collection `pres` with sample data
|
||||
- creates a SheetJS worksheet from the collection (highlighted in the snippet)
|
||||
- creates a SheetJS workbook, adds the worksheet, and exports to XLSX
|
||||
|
||||
4) Run `node SheetJSMongoCRUD.mjs` and open `SheetJSMongoCRUD.xlsx`
|
211
docz/docs/03-demos/06-data/26-redis.md
Normal file
211
docz/docs/03-demos/06-data/26-redis.md
Normal file
@ -0,0 +1,211 @@
|
||||
---
|
||||
title: Redis
|
||||
pagination_prev: demos/grid
|
||||
pagination_next: demos/worker
|
||||
sidebar_custom_props:
|
||||
type: nosql
|
||||
---
|
||||
|
||||
Redis has 5 core data types: "String", List", "Set", "Sorted Set", and "Hash".
|
||||
Since the keys and values are limited to simple strings (and numbers), it is
|
||||
possible to store complete databases in a single worksheet.
|
||||
|
||||
![SheetJSRedis.xlsx](pathname:///nosql/sheetjsredis.png)
|
||||
|
||||
## Integration Details
|
||||
|
||||
:::note
|
||||
|
||||
[`SheetJSRedis.mjs`](pathname:///nosql/SheetJSRedis.mjs) exports the methods:
|
||||
- `redis_to_ws` creates a SheetJS worksheet by querying a redis client
|
||||
- `ws_to_redis` creates an array of query objects from the SheetJS worksheet
|
||||
|
||||
:::
|
||||
|
||||
The first row holds the data type and the second row holds the property name.
|
||||
|
||||
The "Exporting Data" snippets generate arrays of arrays that can be added to a
|
||||
worksheet using `sheet_add_aoa`. Since the data is column-oriented, the goal is
|
||||
to add the data starting in the first row of the column after the data:
|
||||
|
||||
```js
|
||||
function add_aoa_to_next_column(worksheet, aoa) {
|
||||
/* get range of worksheet */
|
||||
const range = XLSX.utils.decode_range(worksheet["!ref"])
|
||||
/* the origin to write new data will start in the column after the range */
|
||||
const origin = XLSX.utils.encode_cell({
|
||||
r: 0, // start on first row
|
||||
c: range.e.c + 1 // column after end
|
||||
});
|
||||
/* add data */
|
||||
XLSX.utils.sheet_add_aoa(worksheet, aoa, { origin });
|
||||
}
|
||||
```
|
||||
|
||||
The "Importing Data" snippets generate redis queries. The `ws_to_redis` function
|
||||
first generates an array of arrays with `sheet_to_json`:
|
||||
|
||||
```js
|
||||
const aoa = XLSX.utils.sheet_to_json(worksheet, { header: 1 });
|
||||
```
|
||||
|
||||
#### Strings
|
||||
|
||||
Strings can be stored in a unified String table. The first column holds keys
|
||||
and the second column holds values:
|
||||
|
||||
```
|
||||
XXX| A | B |
|
||||
---+---------+-------+
|
||||
1 | Strings | |
|
||||
2 | | |
|
||||
3 | Hello | World |
|
||||
4 | Sheet | JS |
|
||||
```
|
||||
|
||||
The SheetJS array-of-arrays representation of the string table is an array of
|
||||
key/value pairs:
|
||||
|
||||
```js
|
||||
const aoa = ["Strings"]; aoa.length = 2; // [ "Strings", empty ]
|
||||
const keys = await client.KEYS("*");
|
||||
for(let key of keys) {
|
||||
const type = await client.TYPE(key);
|
||||
// highlight-start
|
||||
if(type == "string") aoa.push([key, await client.GET(key)]);
|
||||
// highlight-end
|
||||
}
|
||||
```
|
||||
|
||||
#### Lists
|
||||
|
||||
Lists are unidimensional and can be stored in their own columns.
|
||||
|
||||
```
|
||||
XXX| C |
|
||||
---+---------+
|
||||
1 | List |
|
||||
2 | List1 |
|
||||
3 | List1V1 |
|
||||
4 | List1V2 |
|
||||
```
|
||||
|
||||
The SheetJS array-of-arrays representation of lists is a column of values.
|
||||
`LRANGE` returns a simple array of values. `sheet_add_aoa` interprets the result
|
||||
as one row. The code transposes the result with `values.map(v => [v])`.
|
||||
|
||||
```js
|
||||
const values = await client.LRANGE(key, 0, -1);
|
||||
const aoa = [ ["List"], [key] ].concat(values.map(v => [v]));
|
||||
```
|
||||
|
||||
#### Sets
|
||||
|
||||
Sets are unidimensional and can be stored in their own columns.
|
||||
|
||||
```
|
||||
XXX| D |
|
||||
---+-------+
|
||||
1 | Set |
|
||||
2 | Set1 |
|
||||
3 | Set1A |
|
||||
4 | Set1B |
|
||||
```
|
||||
|
||||
The SheetJS array-of-arrays representation of sets is a column of values.
|
||||
`SMEMBERS` returns a simple array of values. `sheet_add_aoa` interprets result
|
||||
as one row. The code transposes the result with `values.map(v => [v])`.
|
||||
|
||||
```js
|
||||
const values = await client.SMEMBERS(key);
|
||||
const aoa = [ ["Set"], [key] ].concat(values.map(v => [v]));
|
||||
```
|
||||
|
||||
#### Sorted Sets
|
||||
|
||||
Sorted Sets have an associated score which can be stored in the second column.
|
||||
|
||||
```
|
||||
XXX| E | F |
|
||||
---+---------+---+
|
||||
1 | Sorted | |
|
||||
2 | ZSet1 | |
|
||||
3 | Key1 | 1 |
|
||||
4 | Key2 | 2 |
|
||||
```
|
||||
|
||||
The SheetJS array-of-arrays representation is an array of key/score pairs.
|
||||
`ZRANGE_WITHSCORES` returns an array of objects which can be reshaped.
|
||||
|
||||
```js
|
||||
const values = await client.ZRANGE_WITHSCORES(key, 0, -1);
|
||||
const aoa = [ ["Sorted"], [key] ].concat(values.map(v => [v.value, v.score]));
|
||||
```
|
||||
|
||||
#### Hashes
|
||||
|
||||
Hashes are stored like the string table, with key and value columns in order.
|
||||
|
||||
```
|
||||
XXX| G | H |
|
||||
---+-------+-------+
|
||||
1 | Hash | |
|
||||
2 | Hash1 | |
|
||||
3 | Key1 | Val1 |
|
||||
4 | Key2 | Val2 |
|
||||
```
|
||||
|
||||
The SheetJS array-of-arrays representation is an array of key/value pairs.
|
||||
`HGETALL` returns a plain object which can be converted using `Object.entries`:
|
||||
|
||||
```js
|
||||
const values = await client.HGETALL(key);
|
||||
const aoa = [ ["Hash"], [key] ].concat(Object.entries(values));
|
||||
```
|
||||
|
||||
## Complete Example
|
||||
|
||||
:::note
|
||||
|
||||
This demo was last tested on 2023 February 23 with Redis 7.0.8, Redis connector
|
||||
module 4.6.4 and NodeJS 18.14.2.
|
||||
|
||||
:::
|
||||
|
||||
:::warning
|
||||
|
||||
The most recent version of the `redis` node module does not work with most
|
||||
versions of NodeJS. It is "ESM-only", requiring NodeJS 18 or later. As a result,
|
||||
this demo also requires NodeJS version 18.
|
||||
|
||||
Questions regarding the `redis` library and the decision to drop traditional
|
||||
NodeJS "CommonJS" module support should be directed to the Redis team.
|
||||
|
||||
:::
|
||||
|
||||
0) Set up and start a local Redis server. On Intel macOS:
|
||||
|
||||
```bash
|
||||
brew install redis@7.0.8
|
||||
```
|
||||
|
||||
1) Download the following scripts:
|
||||
|
||||
- [`SheetJSRedis.mjs`](pathname:///nosql/SheetJSRedis.mjs)
|
||||
- [`SheetJSRedisTest.mjs`](pathname:///nosql/SheetJSRedisTest.mjs)
|
||||
|
||||
```bash
|
||||
curl -LO https://docs.sheetjs.com/nosql/SheetJSRedis.mjs
|
||||
curl -LO https://docs.sheetjs.com/nosql/SheetJSRedisTest.mjs
|
||||
```
|
||||
|
||||
2) Install dependencies and run:
|
||||
|
||||
```bash
|
||||
npm i --save https://cdn.sheetjs.com/xlsx-latest/xlsx-latest.tgz redis@4.6.4
|
||||
node SheetJSRedisTest.mjs
|
||||
```
|
||||
|
||||
Inspect the output and compare with the data in `SheetJSRedisTest.mjs`.
|
||||
|
||||
Open `SheetJSRedis.xlsx` and verify the columns have the correct data
|
105
docz/docs/03-demos/06-data/29-pouchdb.md
Normal file
105
docz/docs/03-demos/06-data/29-pouchdb.md
Normal file
@ -0,0 +1,105 @@
|
||||
---
|
||||
title: PouchDB
|
||||
pagination_prev: demos/grid
|
||||
pagination_next: demos/worker
|
||||
sidebar_custom_props:
|
||||
type: nosql
|
||||
---
|
||||
|
||||
PouchDB is a pure JS database with built-in synchronization features.
|
||||
|
||||
## Integration Details
|
||||
|
||||
`Database#allDocs` is the standard approach for bulk data export. The generated
|
||||
row objects have additional `_id` and `_rev` keys that should be removed.
|
||||
|
||||
Nested objects must be flattened. The ["Tutorial"](/docs/getting-started/example)
|
||||
includes an example of constructing a simple array.
|
||||
|
||||
```js
|
||||
function export_pouchdb_to_xlsx(db) {
|
||||
/* fetch all rows, including the underlying data */
|
||||
db.allDocs({include_docs: true}, function(err, doc) {
|
||||
|
||||
/* pull the individual data rows */
|
||||
const aoo = doc.rows.map(r => {
|
||||
/* `rest` will include every field from `r` except for _id and _rev */
|
||||
const { _id, _rev, ...rest } = r;
|
||||
return rest;
|
||||
});
|
||||
|
||||
/* generate worksheet */
|
||||
const ws = XLSX.utils.json_to_sheet(aoo);
|
||||
|
||||
/* generate workbook and export */
|
||||
const wb = XLSX.utils.book_new();
|
||||
XLSX.utils.book_append_sheet(wb, ws, "Sheet1");
|
||||
XLSX.writeFile(wb, "SheetJSPouch.xlsx");
|
||||
});
|
||||
}
|
||||
```
|
||||
|
||||
## Complete Example
|
||||
|
||||
0) Download the "Working Version" from the Getting Started guide.
|
||||
|
||||
The ZIP file should have `MD5` checksum `ac4da7cb0cade1be293ba222462f109c`:
|
||||
|
||||
```bash
|
||||
curl -LO https://github.com/nickcolley/getting-started-todo/archive/master.zip
|
||||
md5sum master.zip || md5 master.zip
|
||||
### the checksum will be printed
|
||||
```
|
||||
|
||||
If the download is unavailable, a mirror is available at
|
||||
<https://docs.sheetjs.com/pouchdb/master.zip>
|
||||
|
||||
1) Unzip the `master.zip` file and enter the folder:
|
||||
|
||||
```bash
|
||||
unzip master.zip
|
||||
cd getting-started-todo-master
|
||||
```
|
||||
|
||||
2) Edit `index.html` to reference the SheetJS library and add a button:
|
||||
|
||||
```html title="index.html"
|
||||
<body>
|
||||
<!-- highlight-start -->
|
||||
<script src="https://cdn.sheetjs.com/xlsx-latest/package/dist/xlsx.full.min.js"></script>
|
||||
<button id="xport">Export!</button>
|
||||
<!-- highlight-end -->
|
||||
<section id="todoapp">
|
||||
```
|
||||
|
||||
3) Just before the end of `app.js`, add a `click` event listener:
|
||||
|
||||
```js title="app.js"
|
||||
if (remoteCouch) {
|
||||
sync();
|
||||
}
|
||||
|
||||
// highlight-start
|
||||
document.getElementById("xport").addEventListener("click", function() {
|
||||
db.allDocs({include_docs: true}, function(err, doc) {
|
||||
const aoo = doc.rows.map(r => {
|
||||
const { _id, _rev, ... rest } = r.doc;
|
||||
return rest;
|
||||
});
|
||||
const ws = XLSX.utils.json_to_sheet(aoo);
|
||||
const wb = XLSX.utils.book_new(); XLSX.utils.book_append_sheet(wb, ws, "Sheet1");
|
||||
XLSX.writeFile(wb, "SheetJSPouch.xlsx");
|
||||
});
|
||||
});
|
||||
// highlight-end
|
||||
})();
|
||||
```
|
||||
|
||||
4) Start a local web server:
|
||||
|
||||
```bash
|
||||
npx http-server .
|
||||
```
|
||||
|
||||
Access `http://localhost:8080` from your browser. Add a few items and click
|
||||
the "Export!" button to generate a new file.
|
5
docz/docs/03-demos/06-data/_category_.json
Normal file
5
docz/docs/03-demos/06-data/_category_.json
Normal file
@ -0,0 +1,5 @@
|
||||
{
|
||||
"label": "Databases and Stores",
|
||||
"position": 6,
|
||||
"collapsed": false
|
||||
}
|
222
docz/docs/03-demos/06-data/index.md
Normal file
222
docz/docs/03-demos/06-data/index.md
Normal file
@ -0,0 +1,222 @@
|
||||
---
|
||||
title: Databases and Stores
|
||||
pagination_prev: demos/grid
|
||||
pagination_next: demos/worker
|
||||
---
|
||||
|
||||
import DocCardList from '@theme/DocCardList';
|
||||
import {useCurrentSidebarCategory} from '@docusaurus/theme-common';
|
||||
|
||||
"Database" is a catch-all term referring to traditional RDBMS as well as K/V
|
||||
stores, document databases, and other "NoSQL" storages. There are many external
|
||||
database systems as well as browser APIs like WebSQL and `localStorage`
|
||||
|
||||
## Data Storage
|
||||
|
||||
### Structured Tables
|
||||
|
||||
Database tables are a common import and export target for spreadsheets. One
|
||||
common representation of a database table is an array of JS objects whose keys
|
||||
are column headers and whose values are the underlying data values. For example,
|
||||
|
||||
| Name | Index |
|
||||
| :----------- | ----: |
|
||||
| Barack Obama | 44 |
|
||||
| Donald Trump | 45 |
|
||||
| Joseph Biden | 46 |
|
||||
|
||||
is naturally represented as an array of objects
|
||||
|
||||
```js
|
||||
[
|
||||
{ Name: "Barack Obama", Index: 44 },
|
||||
{ Name: "Donald Trump", Index: 45 },
|
||||
{ Name: "Joseph Biden", Index: 46 }
|
||||
]
|
||||
```
|
||||
|
||||
The `sheet_to_json` and `json_to_sheet` helper functions work with objects of
|
||||
similar shape, converting to and from worksheet objects. The corresponding
|
||||
worksheet would include a header row for the labels:
|
||||
|
||||
```
|
||||
XXX| A | B |
|
||||
---+--------------+-------+
|
||||
1 | Name | Index |
|
||||
2 | Barack Obama | 44 |
|
||||
3 | Donald Trump | 45 |
|
||||
3 | Joseph Biden | 46 |
|
||||
```
|
||||
|
||||
### Unstructured Data
|
||||
|
||||
"Schema-less" / "NoSQL" databases allow for arbitrary keys and values within the
|
||||
entries in the database. K/V stores and Objects add additional restrictions.
|
||||
|
||||
There is no natural way to translate arbitrarily shaped schemas to worksheets
|
||||
in a workbook. One common trick is to dedicate one worksheet to holding named
|
||||
keys. For example, considering the JS object:
|
||||
|
||||
```json
|
||||
{
|
||||
"title": "SheetDB",
|
||||
"metadata": {
|
||||
"author": "SheetJS",
|
||||
"code": 7262
|
||||
},
|
||||
"data": [
|
||||
{ "Name": "Barack Obama", "Index": 44 },
|
||||
{ "Name": "Donald Trump", "Index": 45 },
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
A dedicated worksheet should store the one-off named values:
|
||||
|
||||
```
|
||||
XXX| A | B |
|
||||
---+-----------------+---------+
|
||||
1 | Path | Value |
|
||||
2 | title | SheetDB |
|
||||
3 | metadata.author | SheetJS |
|
||||
4 | metadata.code | 7262 |
|
||||
```
|
||||
|
||||
## Data Interchange
|
||||
|
||||
### Exporting Data
|
||||
|
||||
There are NodeJS connector libraries for many popular RDBMS systems. Libraries
|
||||
have facilities for connecting to a database, executing queries, and obtaining
|
||||
results as arrays of JS objects that can be passed to `json_to_sheet`. The main
|
||||
differences surround API shape and supported data types.
|
||||
|
||||
For example, `better-sqlite3` is a connector library for SQLite. The result of
|
||||
a `SELECT` query is an array of objects suitable for `json_to_sheet`:
|
||||
|
||||
```js
|
||||
var aoo = db.prepare("SELECT * FROM 'Presidents' LIMIT 100000").all();
|
||||
// highlight-next-line
|
||||
var worksheet = XLSX.utils.json_to_sheet(aoo);
|
||||
```
|
||||
|
||||
Other databases will require post-processing. For example, MongoDB results
|
||||
include the Object ID (usually stored in the `_id` key). This can be removed
|
||||
before generating a worksheet:
|
||||
|
||||
```js
|
||||
const aoo = await db.collection('coll').find({}).toArray();
|
||||
// highlight-next-line
|
||||
aoo.forEach((x) => delete x._id);
|
||||
const ws = XLSX.utils.json_to_sheet(aoo);
|
||||
```
|
||||
|
||||
### Importing Data
|
||||
|
||||
When a strict schema is needed, the `sheet_to_json` helper function generates
|
||||
arrays of JS objects that can be scanned to determine the column "types".
|
||||
|
||||
:::note
|
||||
|
||||
Document databases like MongoDB tend not to require schemas. Arrays of objects
|
||||
can be used directly without setting up a schema:
|
||||
|
||||
```js
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
// highlight-next-line
|
||||
await db.collection('coll').insertMany(aoo, { ordered: true });
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
The ["SQL Connectors"](/docs/demos/data/sql) demo includes sample functions for
|
||||
generating SQL CREATE TABLE and INSERT queries.
|
||||
|
||||
## DSV Interchange
|
||||
|
||||
Many databases offer utilities for reading and writing CSV, pipe-separated
|
||||
documents, and other simple data files. They enable workflows where the library
|
||||
generates CSV data for the database to process or where the library parses CSV
|
||||
files created by the database.
|
||||
|
||||
#### Worksheet to CSV
|
||||
|
||||
CSV data can be generated from worksheets using `XLSX.utils.sheet_to_csv`.
|
||||
|
||||
```js
|
||||
// starting from a worksheet object
|
||||
const csv = XLSX.utils.sheet_to_json(ws);
|
||||
|
||||
// whole workbook conversion
|
||||
const csv_arr = wb.SheetNames.map(n => XLSX.utils.sheet_to_json(wb.Sheets[n]));
|
||||
```
|
||||
|
||||
#### CSV to Worksheet
|
||||
|
||||
`XLSX.read` can read strings with CSV data. It will generate single-sheet
|
||||
workbooks with worksheet name `Sheet1`.
|
||||
|
||||
Where supported, `XLSX.readFile` can read files.
|
||||
|
||||
```js
|
||||
// starting from a CSV string
|
||||
const ws_str = XLSX.read(csv_str, {type: "string"}).Sheets.Sheet1;
|
||||
|
||||
// starting from a CSV binary string (e.g. `FileReader#readAsBinaryString`)
|
||||
const ws_bstr = XLSX.read(csv_bstr, {type: "binary"}).Sheets.Sheet1;
|
||||
|
||||
// starting from a CSV file in NodeJS or Bun or Deno
|
||||
const ws_file = XLSX.readFile("test.csv").Sheets.Sheet1;
|
||||
```
|
||||
|
||||
## Demos
|
||||
|
||||
### Web APIs
|
||||
|
||||
The following Web APIs are featured in separate demos:
|
||||
|
||||
<ul>{useCurrentSidebarCategory().items.filter(item => item.customProps?.type == "web").map(item => {
|
||||
const listyle = (item.customProps?.icon) ? {
|
||||
listStyleImage: `url("${item.customProps.icon}")`
|
||||
} : {};
|
||||
return (<li style={listyle} {...(item.customProps?.class ? {className: item.customProps.class}: {})}>
|
||||
<a href={item.href}>{item.label}</a>{item.customProps?.summary && (" - " + item.customProps.summary)}
|
||||
</li>);
|
||||
})}</ul>
|
||||
|
||||
### SQL Databases
|
||||
|
||||
The following SQL-related topics are covered in separate demos:
|
||||
|
||||
<ul>{useCurrentSidebarCategory().items.filter(item => item.customProps?.sql).map(item => {
|
||||
const listyle = (item.customProps?.icon) ? {
|
||||
listStyleImage: `url("${item.customProps.icon}")`
|
||||
} : {};
|
||||
return (<li style={listyle} {...(item.customProps?.class ? {className: item.customProps.class}: {})}>
|
||||
<a href={item.href}>{item.label}</a>{item.customProps?.summary && (" - " + item.customProps.summary)}
|
||||
</li>);
|
||||
})}</ul>
|
||||
|
||||
### NoSQL Data Stores
|
||||
|
||||
Demos for the following "NoSQL" data stores apply structured access patterns:
|
||||
|
||||
<ul>{useCurrentSidebarCategory().items.filter(item => item.customProps?.type == "document").map(item => {
|
||||
const listyle = (item.customProps?.icon) ? {
|
||||
listStyleImage: `url("${item.customProps.icon}")`
|
||||
} : {};
|
||||
return (<li style={listyle} {...(item.customProps?.class ? {className: item.customProps.class}: {})}>
|
||||
<a href={item.href}>{item.label}</a>{item.customProps?.summary && (" - " + item.customProps.summary)}
|
||||
</li>);
|
||||
})}</ul>
|
||||
|
||||
Demos for the following "NoSQL" data stores apply unstructured access patterns:
|
||||
|
||||
<ul>{useCurrentSidebarCategory().items.filter(item => item.customProps?.type == "nosql").map(item => {
|
||||
const listyle = (item.customProps?.icon) ? {
|
||||
listStyleImage: `url("${item.customProps.icon}")`
|
||||
} : {};
|
||||
return (<li style={listyle} {...(item.customProps?.class ? {className: item.customProps.class}: {})}>
|
||||
<a href={item.href}>{item.label}</a>{item.customProps?.summary && (" - " + item.customProps.summary)}
|
||||
</li>);
|
||||
})}</ul>
|
@ -1,859 +0,0 @@
|
||||
---
|
||||
title: Databases and SQL
|
||||
---
|
||||
|
||||
import current from '/version.js';
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
|
||||
"Database" is a catch-all term referring to traditional RDBMS as well as K/V
|
||||
stores, document databases, and other "NoSQL" storages. There are many external
|
||||
database systems as well as browser APIs like WebSQL and `localStorage`
|
||||
|
||||
This demo discusses general strategies and provides examples for a variety of
|
||||
database systems. The examples are merely intended to demonstrate very basic
|
||||
functionality.
|
||||
|
||||
Key-value stores, unstructured use of Document Databases, and other schema-less
|
||||
databases are covered in the [NoSQL demo](/docs/demos/nosql).
|
||||
|
||||
|
||||
## Structured Tables
|
||||
|
||||
Database tables are a common import and export target for spreadsheets. One
|
||||
common representation of a database table is an array of JS objects whose keys
|
||||
are column headers and whose values are the underlying data values. For example,
|
||||
|
||||
| Name | Index |
|
||||
| :----------- | ----: |
|
||||
| Barack Obama | 44 |
|
||||
| Donald Trump | 45 |
|
||||
| Joseph Biden | 46 |
|
||||
|
||||
is naturally represented as an array of objects
|
||||
|
||||
```js
|
||||
[
|
||||
{ Name: "Barack Obama", Index: 44 },
|
||||
{ Name: "Donald Trump", Index: 45 },
|
||||
{ Name: "Joseph Biden", Index: 46 }
|
||||
]
|
||||
```
|
||||
|
||||
The `sheet_to_json` and `json_to_sheet` helper functions work with objects of
|
||||
similar shape, converting to and from worksheet objects. The corresponding
|
||||
worksheet would include a header row for the labels:
|
||||
|
||||
```
|
||||
XXX| A | B |
|
||||
---+--------------+-------+
|
||||
1 | Name | Index |
|
||||
2 | Barack Obama | 44 |
|
||||
3 | Donald Trump | 45 |
|
||||
3 | Joseph Biden | 46 |
|
||||
```
|
||||
|
||||
|
||||
### Building Worksheets from Structured Tables
|
||||
|
||||
There are NodeJS connector libraries for many popular RDBMS systems. Libraries
|
||||
have facilities for connecting to a database, executing queries, and obtaining
|
||||
results as arrays of JS objects that can be passed to `json_to_sheet`. The main
|
||||
differences surround API shape and supported data types.
|
||||
|
||||
For example, `better-sqlite3` is a connector library for SQLite. The result of
|
||||
a `SELECT` query is an array of objects suitable for `json_to_sheet`:
|
||||
|
||||
```js
|
||||
var aoo = db.prepare("SELECT * FROM 'Presidents' LIMIT 100000").all();
|
||||
// highlight-next-line
|
||||
var worksheet = XLSX.utils.json_to_sheet(aoo);
|
||||
```
|
||||
|
||||
Other databases will require post-processing. For example, MongoDB results
|
||||
include the Object ID (usually stored in the `_id` key). This can be removed
|
||||
before generating a worksheet:
|
||||
|
||||
```js
|
||||
const aoo = await db.collection('coll').find({}).toArray();
|
||||
// highlight-next-line
|
||||
aoo.forEach((x) => delete x._id);
|
||||
const ws = XLSX.utils.json_to_sheet(aoo);
|
||||
```
|
||||
|
||||
### Building Schemas from Worksheets
|
||||
|
||||
When a strict schema is needed, the `sheet_to_json` helper function generates
|
||||
arrays of JS objects that can be scanned to determine the column "types".
|
||||
|
||||
:::note
|
||||
|
||||
Document databases like MongoDB tend not to require schemas. Arrays of objects
|
||||
can be used directly without setting up a schema:
|
||||
|
||||
```js
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
// highlight-next-line
|
||||
await db.collection('coll').insertMany(aoo, { ordered: true });
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
This example will fetch <https://sheetjs.com/data/cd.xls>, scan the columns of the
|
||||
first worksheet to determine data types, and generate 6 PostgreSQL statements.
|
||||
|
||||
<details><summary><b>Explanation</b> (click to show)</summary>
|
||||
|
||||
The relevant `generate_sql` function takes a worksheet name and a table name:
|
||||
|
||||
```js
|
||||
// define mapping between determined types and PostgreSQL types
|
||||
const PG = { "n": "float8", "s": "text", "b": "boolean" };
|
||||
|
||||
function generate_sql(ws, wsname) {
|
||||
|
||||
// generate an array of objects from the data
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
|
||||
// types will map column headers to types, while hdr holds headers in order
|
||||
const types = {}, hdr = [];
|
||||
|
||||
// loop across each row object
|
||||
aoo.forEach(row =>
|
||||
// Object.entries returns a row of [key, value] pairs. Loop across those
|
||||
Object.entries(row).forEach(([k,v]) => {
|
||||
|
||||
// If this is first time seeing key, mark unknown and append header array
|
||||
if(!types[k]) { types[k] = "?"; hdr.push(k); }
|
||||
|
||||
// skip null and undefined
|
||||
if(v == null) return;
|
||||
|
||||
// check and resolve type
|
||||
switch(typeof v) {
|
||||
case "string": // strings are the broadest type
|
||||
types[k] = "s"; break;
|
||||
case "number": // if column is not string, number is the broadest type
|
||||
if(types[k] != "s") types[k] = "n"; break;
|
||||
case "boolean": // only mark boolean if column is unknown or boolean
|
||||
if("?b".includes(types[k])) types[k] = "b"; break;
|
||||
default: types[k] = "s"; break; // default to string type
|
||||
}
|
||||
})
|
||||
);
|
||||
|
||||
// The final array consists of the CREATE TABLE query and a series of INSERTs
|
||||
return [
|
||||
// generate CREATE TABLE query and return batch
|
||||
`CREATE TABLE \`${wsname}\` (${hdr.map(h =>
|
||||
// column name must be wrapped in backticks
|
||||
`\`${h}\` ${PG[types[h]]}`
|
||||
).join(", ")});`
|
||||
].concat(aoo.map(row => { // generate INSERT query for each row
|
||||
// entries will be an array of [key, value] pairs for the data in the row
|
||||
const entries = Object.entries(row);
|
||||
// fields will hold the column names and values will hold the values
|
||||
const fields = [], values = [];
|
||||
// check each key/value pair in the row
|
||||
entries.forEach(([k,v]) => {
|
||||
// skip null / undefined
|
||||
if(v == null) return;
|
||||
// column name must be wrapped in backticks
|
||||
fields.push(`\`${k}\``);
|
||||
// when the field type is numeric, `true` -> 1 and `false` -> 0
|
||||
if(types[k] == "n") values.push(typeof v == "boolean" ? (v ? 1 : 0) : v);
|
||||
// otherwise,
|
||||
else values.push(`'${v.toString().replaceAll("'", "''")}'`);
|
||||
})
|
||||
if(fields.length) return `INSERT INTO \`${wsname}\` (${fields.join(", ")}) VALUES (${values.join(", ")})`;
|
||||
})).filter(x => x); // filter out skipped rows
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
```jsx live
|
||||
function SheetJSQLWriter() {
|
||||
// define mapping between determined types and PostgreSQL types
|
||||
const PG = { "n": "float8", "s": "text", "b": "boolean" };
|
||||
function generate_sql(ws, wsname) {
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
const types = {}, hdr = [];
|
||||
// loop across each key in each column
|
||||
aoo.forEach(row => Object.entries(row).forEach(([k,v]) => {
|
||||
// set up type if header hasn't been seen
|
||||
if(!types[k]) { types[k] = "?"; hdr.push(k); }
|
||||
// check and resolve type
|
||||
switch(typeof v) {
|
||||
case "string": types[k] = "s"; break;
|
||||
case "number": if(types[k] != "s") types[k] = "n"; break;
|
||||
case "boolean": if("?b".includes(types[k])) types[k] = "b"; break;
|
||||
default: types[k] = "s"; break;
|
||||
}
|
||||
}));
|
||||
return [
|
||||
// generate CREATE TABLE query and return batch
|
||||
`CREATE TABLE \`${wsname}\` (${hdr.map(h => `\`${h}\` ${PG[types[h]]}`).join(", ")});`
|
||||
].concat(aoo.map(row => {
|
||||
const entries = Object.entries(row);
|
||||
const fields = [], values = [];
|
||||
entries.forEach(([k,v]) => {
|
||||
if(v == null) return;
|
||||
fields.push(`\`${k}\``);
|
||||
if(types[k] == "n") values.push(typeof v == "boolean" ? (v ? 1 : 0) : v);
|
||||
else values.push(`'${v.toString().replaceAll("'", "''")}'`);
|
||||
})
|
||||
if(fields.length) return `INSERT INTO \`${wsname}\` (${fields.join(", ")}) VALUES (${values.join(", ")})`;
|
||||
})).filter(x => x).slice(0, 6);
|
||||
}
|
||||
const [url, setUrl] = React.useState("https://sheetjs.com/data/cd.xls");
|
||||
const set_url = React.useCallback((evt) => setUrl(evt.target.value));
|
||||
const [out, setOut] = React.useState("");
|
||||
const xport = React.useCallback(async() => {
|
||||
const ab = await (await fetch(url)).arrayBuffer();
|
||||
const wb = XLSX.read(ab), wsname = wb.SheetNames[0];
|
||||
setOut(generate_sql(wb.Sheets[wsname], wsname).join("\n"));
|
||||
});
|
||||
|
||||
return ( <> {out && (<><a href={url}>{url}</a><pre>{out}</pre></>)}
|
||||
<b>URL: </b><input type="text" value={url} onChange={set_url} size="50"/>
|
||||
<br/><button onClick={xport}><b>Fetch!</b></button>
|
||||
</> );
|
||||
}
|
||||
```
|
||||
|
||||
### DSV Interchange
|
||||
|
||||
Many databases offer utilities for reading and writing CSV, pipe-separated
|
||||
documents, and other simple data files. They enable workflows where the library
|
||||
generates CSV data for the database to process or where the library parses CSV
|
||||
files created by the database.
|
||||
|
||||
#### Worksheet to CSV
|
||||
|
||||
CSV data can be generated from worksheets using `XLSX.utils.sheet_to_csv`.
|
||||
|
||||
```js
|
||||
// starting from a worksheet object
|
||||
const csv = XLSX.utils.sheet_to_json(ws);
|
||||
|
||||
// whole workbook conversion
|
||||
const csv_arr = wb.SheetNames.map(n => XLSX.utils.sheet_to_json(wb.Sheets[n]));
|
||||
```
|
||||
|
||||
#### CSV to Worksheet
|
||||
|
||||
`XLSX.read` can read strings with CSV data. It will generate single-sheet
|
||||
workbooks with worksheet name `Sheet1`.
|
||||
|
||||
Where supported, `XLSX.readFile` can read files.
|
||||
|
||||
```js
|
||||
// starting from a CSV string
|
||||
const ws_str = XLSX.read(csv_str, {type: "string"}).Sheets.Sheet1;
|
||||
|
||||
// starting from a CSV binary string (e.g. `FileReader#readAsBinaryString`)
|
||||
const ws_bstr = XLSX.read(csv_bstr, {type: "binary"}).Sheets.Sheet1;
|
||||
|
||||
// starting from a CSV file in NodeJS or Bun or Deno
|
||||
const ws_file = XLSX.readFile("test.csv").Sheets.Sheet1;
|
||||
```
|
||||
|
||||
## Databases
|
||||
|
||||
### SQLite
|
||||
|
||||
Most platforms offer a simple way to query SQLite databases.
|
||||
|
||||
The following example shows how to query for each table in an SQLite database,
|
||||
query for the data for each table, add each non-empty table to a workbook, and
|
||||
export as XLSX.
|
||||
|
||||
[The Northwind database is available in SQLite form](https://raw.githubusercontent.com/jpwhite3/northwind-SQLite3/master/dist/northwind.db).
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="nodejs" label="NodeJS">
|
||||
|
||||
The **`better-sqlite3`** module provides a very simple API for working with
|
||||
SQLite databases. `Statement#all` runs a prepared statement and returns an array
|
||||
of JS objects.
|
||||
|
||||
1) Install the dependencies:
|
||||
|
||||
```bash
|
||||
npm i --save https://cdn.sheetjs.com/xlsx-latest/xlsx-latest.tgz better-sqlite3
|
||||
```
|
||||
|
||||
2) Save the following to `node.mjs`:
|
||||
|
||||
```js title="node.mjs"
|
||||
/* Load SQLite3 connector library */
|
||||
import Database from "better-sqlite3";
|
||||
|
||||
/* Load SheetJS library */
|
||||
import * as XLSX from 'xlsx';
|
||||
import * as fs from 'fs';
|
||||
XLSX.set_fs(fs);
|
||||
|
||||
/* Initialize database */
|
||||
var db = Database("northwind.db");
|
||||
|
||||
/* Create new workbook */
|
||||
var wb = XLSX.utils.book_new();
|
||||
|
||||
/* Get list of table names */
|
||||
var sql = db.prepare("SELECT name FROM sqlite_master WHERE type='table'");
|
||||
var result = sql.all();
|
||||
|
||||
/* Loop across each name */
|
||||
result.forEach(function(row) {
|
||||
/* Get first 100K rows */
|
||||
var aoo = db.prepare("SELECT * FROM '" + row.name + "' LIMIT 100000").all();
|
||||
if(aoo.length > 0) {
|
||||
/* Create Worksheet from the row objects */
|
||||
var ws = XLSX.utils.json_to_sheet(aoo, {dense: true});
|
||||
/* Add to Workbook */
|
||||
XLSX.utils.book_append_sheet(wb, ws, row.name);
|
||||
}
|
||||
});
|
||||
|
||||
/* Write File */
|
||||
XLSX.writeFile(wb, "node.xlsx");
|
||||
```
|
||||
|
||||
3) Run `node node.mjs` and open `node.xlsx`
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="bun" label="Bun">
|
||||
|
||||
Bun ships with a built-in high-performance module `bun:sqlite`.
|
||||
|
||||
1) Install the dependencies:
|
||||
|
||||
```bash
|
||||
npm i --save https://cdn.sheetjs.com/xlsx-latest/xlsx-latest.tgz
|
||||
```
|
||||
|
||||
2) Save the following to `bun.mjs`:
|
||||
|
||||
```js title="bun.mjs"
|
||||
/* Load SQLite3 connector library */
|
||||
import { Database } from "bun:sqlite";
|
||||
|
||||
/* Load SheetJS library */
|
||||
import * as XLSX from 'xlsx';
|
||||
import * as fs from 'fs';
|
||||
XLSX.set_fs(fs);
|
||||
|
||||
/* Initialize database */
|
||||
var db = Database.open("northwind.db");
|
||||
|
||||
/* Create new workbook */
|
||||
var wb = XLSX.utils.book_new();
|
||||
|
||||
/* Get list of table names */
|
||||
var sql = db.prepare("SELECT name FROM sqlite_master WHERE type='table'");
|
||||
var result = sql.all();
|
||||
|
||||
/* Loop across each name */
|
||||
result.forEach(function(row) {
|
||||
/* Get first 100K rows */
|
||||
var aoo = db.prepare("SELECT * FROM '" + row.name + "' LIMIT 100000").all();
|
||||
if(aoo.length > 0) {
|
||||
/* Create Worksheet from the row objects */
|
||||
var ws = XLSX.utils.json_to_sheet(aoo, {dense: true});
|
||||
/* Add to Workbook */
|
||||
XLSX.utils.book_append_sheet(wb, ws, row.name);
|
||||
}
|
||||
});
|
||||
|
||||
/* Write File */
|
||||
XLSX.writeFile(wb, "bun.xlsx");
|
||||
```
|
||||
|
||||
3) Run `bun bun.mjs` and open `bun.xlsx`
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="deno" label="Deno">
|
||||
|
||||
Deno `sqlite` library returns raw arrays of arrays.
|
||||
|
||||
1) Save the following to `deno.ts`:
|
||||
|
||||
```ts title="deno.ts"
|
||||
/* Load SQLite3 connector library */
|
||||
import { DB } from "https://deno.land/x/sqlite/mod.ts";
|
||||
|
||||
/* Load SheetJS library */
|
||||
// @deno-types="https://cdn.sheetjs.com/xlsx-latest/package/types/index.d.ts"
|
||||
import * as XLSX from 'https://cdn.sheetjs.com/xlsx-latest/package/xlsx.mjs';
|
||||
|
||||
/* Initialize database */
|
||||
var db = new DB("northwind.db");
|
||||
|
||||
/* Create new workbook */
|
||||
var wb = XLSX.utils.book_new();
|
||||
|
||||
/* Get list of table names */
|
||||
var sql = db.prepareQuery("SELECT name FROM sqlite_master WHERE type='table'");
|
||||
var result = sql.all();
|
||||
/* Loop across each name */
|
||||
result.forEach(function(row) {
|
||||
/* Get first 100K rows */
|
||||
var query = db.prepareQuery("SELECT * FROM '" + row[0] + "' LIMIT 100000")
|
||||
var aoa = query.all();
|
||||
if(aoa.length > 0) {
|
||||
/* Create array of arrays */
|
||||
var data = [query.columns().map(x => x.name)].concat(aoa);
|
||||
/* Create Worksheet from the aoa */
|
||||
var ws = XLSX.utils.aoa_to_sheet(data, {dense: true});
|
||||
/* Add to Workbook */
|
||||
XLSX.utils.book_append_sheet(wb, ws, row[0]);
|
||||
}
|
||||
});
|
||||
|
||||
/* Write File */
|
||||
XLSX.writeFile(wb, "deno.xlsx");
|
||||
```
|
||||
|
||||
3) Run `deno run --allow-read --allow-write deno.ts` and open `deno.xlsx`
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
### WebSQL
|
||||
|
||||
:::warning
|
||||
|
||||
This information is included for legacy deployments. Web SQL is deprecated.
|
||||
|
||||
::::
|
||||
|
||||
WebSQL was a popular SQL-based in-browser database available on Chrome. In
|
||||
practice, it is powered by SQLite, and most simple SQLite-compatible queries
|
||||
work as-is in WebSQL.
|
||||
|
||||
The public demo <https://sheetjs.com/sql> generates a database from workbook.
|
||||
|
||||
Importing data from spreadsheets is straightforward using the `generate_sql`
|
||||
helper function from ["Building Schemas"](#building-schemas-from-worksheets):
|
||||
|
||||
```js
|
||||
const db = openDatabase('sheetql', '1.0', 'SheetJS WebSQL Test', 2097152);
|
||||
const stmts = generate_sql(ws, wsname);
|
||||
// NOTE: tx.executeSql and db.transaction use callbacks. This wraps in Promises
|
||||
for(var i = 0; i < stmts.length; ++i) await new Promise((res, rej) => {
|
||||
db.transaction(tx =>
|
||||
tx.executeSql(stmts[i], [],
|
||||
(tx, data) => res(data), // if the query is successful, return the data
|
||||
(tx, err) => rej(err) // if the query fails, reject with the error
|
||||
));
|
||||
});
|
||||
```
|
||||
|
||||
The result of a SQL SELECT statement is a `SQLResultSet`. The `rows` property
|
||||
is a `SQLResultSetRowList`. It is an "array-like" structure that has `length`
|
||||
and properties like `0`, `1`, etc. However, this is not a real Array object.
|
||||
A real Array can be created using `Array.from`:
|
||||
|
||||
```js
|
||||
const db = openDatabase('sheetql', '1.0', 'SheetJS WebSQL Test', 2097152);
|
||||
db.readTransaction(tx =>
|
||||
tx.executeSQL("SELECT * FROM DatabaseTable", [], (tx, data) => {
|
||||
// data.rows is "array-like", so `Array.from` can make it a real array
|
||||
const aoo = Array.from(data.rows);
|
||||
const ws = XLSX.utils.json_to_sheet(aoo);
|
||||
// ... it is recommended to perform an export here OR wrap in a Promise
|
||||
})
|
||||
);
|
||||
```
|
||||
|
||||
The following demo generates a database with 5 fixed SQL statements. Queries
|
||||
can be changed in the Live Editor. The WebSQL database can be inspected in the
|
||||
"WebSQL" section of the "Application" Tab of Developer Tools:
|
||||
|
||||
![WebSQL view in Developer Tools](pathname:///files/websql.png)
|
||||
|
||||
```jsx live
|
||||
function SheetQL() {
|
||||
const [out, setOut] = React.useState("");
|
||||
const queries = [
|
||||
'DROP TABLE IF EXISTS Presidents',
|
||||
'CREATE TABLE Presidents (Name TEXT, Idx REAL)',
|
||||
'INSERT INTO Presidents (Name, Idx) VALUES ("Barack Obama", 44)',
|
||||
'INSERT INTO Presidents (Name, Idx) VALUES ("Donald Trump", 45)',
|
||||
'INSERT INTO Presidents (Name, Idx) VALUES ("Joseph Biden", 46)'
|
||||
];
|
||||
const xport = React.useCallback(async() => {
|
||||
// prep database
|
||||
const db = openDatabase('sheetql', '1.0', 'SheetJS WebSQL Test', 2097152);
|
||||
|
||||
for(var i = 0; i < queries.length; ++i) await new Promise((res, rej) => {
|
||||
db.transaction((tx) => {
|
||||
tx.executeSql(queries[i], [], (tx, data) => res(data), (tx, err) => rej(err));
|
||||
});
|
||||
});
|
||||
|
||||
// pull data and generate rows
|
||||
db.readTransaction(tx => {
|
||||
tx.executeSql("SELECT * FROM Presidents", [], (tx, data) => {
|
||||
const aoo = Array.from(data.rows);
|
||||
setOut("QUERY RESULT:\n" + aoo.map(r => JSON.stringify(r)).join("\n") + "\n")
|
||||
const ws = XLSX.utils.json_to_sheet(aoo);
|
||||
const wb = XLSX.utils.book_new();
|
||||
XLSX.utils.book_append_sheet(wb, ws, "Presidents");
|
||||
XLSX.writeFile(wb, "SheetQL.xlsx");
|
||||
});
|
||||
});
|
||||
});
|
||||
return ( <pre>{out}<button onClick={xport}><b>Fetch!</b></button></pre> );
|
||||
}
|
||||
```
|
||||
|
||||
### LocalStorage and SessionStorage
|
||||
|
||||
The Storage API, encompassing `localStorage` and `sessionStorage`, describes
|
||||
simple key-value stores that only support string values and keys.
|
||||
|
||||
Arrays of objects can be stored using `JSON.stringify` using row index as key:
|
||||
|
||||
```js
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
for(var i = 0; i < aoo.length; ++i) localStorage.setItem(i, JSON.stringify(aoo[i]));
|
||||
```
|
||||
|
||||
Recovering the array of objects is possible by using `JSON.parse`:
|
||||
|
||||
```js
|
||||
const aoo = [];
|
||||
for(var i = 0; i < localStorage.length; ++i) aoo.push(JSON.parse(localStorage.getItem(i)));
|
||||
const ws = XLSX.utils.json_to_sheet(aoo);
|
||||
```
|
||||
|
||||
This example will fetch <https://sheetjs.com/data/cd.xls>, fill `localStorage` with
|
||||
rows, then generate a worksheet from the rows and write to a new file.
|
||||
|
||||
:::caution
|
||||
|
||||
This example is for illustration purposes. If array of objects is available, it
|
||||
is strongly recommended to convert that array to a worksheet directly.
|
||||
|
||||
:::
|
||||
|
||||
```jsx live
|
||||
function SheetJStorage() {
|
||||
const [url, setUrl] = React.useState("https://sheetjs.com/data/cd.xls");
|
||||
const set_url = React.useCallback((evt) => setUrl(evt.target.value));
|
||||
const [out, setOut] = React.useState("");
|
||||
const xport = React.useCallback(async() => {
|
||||
// get first worksheet data as array of objects
|
||||
const ab = await (await fetch(url)).arrayBuffer();
|
||||
const wb = XLSX.read(ab), wsname = wb.SheetNames[0];
|
||||
const aoo = XLSX.utils.sheet_to_json(wb.Sheets[wsname]);
|
||||
|
||||
// reset and populate localStorage
|
||||
localStorage.clear();
|
||||
for(var i = 0; i < aoo.length; ++i) localStorage.setItem(i, JSON.stringify(aoo[i]));
|
||||
|
||||
// create new array of objects from localStorage
|
||||
const new_aoo = [];
|
||||
for(var i = 0; i < localStorage.length; ++i) {
|
||||
const row = JSON.parse(localStorage.getItem(i));
|
||||
new_aoo.push(row);
|
||||
}
|
||||
|
||||
setOut(`Number of rows in LocalStorage: ${localStorage.length}`);
|
||||
|
||||
// create and export workbook
|
||||
const new_ws = XLSX.utils.json_to_sheet(new_aoo);
|
||||
const new_wb = XLSX.utils.book_new();
|
||||
XLSX.utils.book_append_sheet(new_wb, new_ws, "Sheet1");
|
||||
XLSX.writeFile(new_wb, "SheetJStorage.xlsx");
|
||||
});
|
||||
|
||||
return ( <> {out && (<><a href={url}>{url}</a><pre>{out}</pre></>)}
|
||||
<b>URL: </b><input type="text" value={url} onChange={set_url} size="50"/>
|
||||
<br/><button onClick={xport}><b>Fetch!</b></button>
|
||||
</> );
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
### IndexedDB
|
||||
|
||||
`localForage` is a IndexedDB wrapper that presents an async Storage interface.
|
||||
|
||||
Arrays of objects can be stored using `JSON.stringify` using row index as key:
|
||||
|
||||
```js
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
for(var i = 0; i < aoo.length; ++i) await localForage.setItem(i, JSON.stringify(aoo[i]));
|
||||
```
|
||||
|
||||
Recovering the array of objects is possible by using `JSON.parse`:
|
||||
|
||||
```js
|
||||
const aoo = [];
|
||||
for(var i = 0; i < localForage.length; ++i) aoo.push(JSON.parse(await localForage.getItem(i)));
|
||||
const wb = XLSX.utils.json_to_sheet(aoo);
|
||||
```
|
||||
|
||||
### Other SQL Databases
|
||||
|
||||
The `generate_sql` function from ["Building Schemas from Worksheets"](#building-schemas-from-worksheets)
|
||||
can be adapted to generate SQL statements for a variety of databases, including:
|
||||
|
||||
**PostgreSQL**
|
||||
|
||||
The `pg` connector library was tested against the `generate_sql` output as-is.
|
||||
|
||||
The `rows` property of a query result is an array of objects that plays nice
|
||||
with `json_to_sheet`:
|
||||
|
||||
```js
|
||||
const aoa = await connection.query(`SELECT * FROM DataTable`).rows;
|
||||
const worksheet = XLSX.utils.json_to_sheet(aoa);
|
||||
```
|
||||
|
||||
**MySQL / MariaDB**
|
||||
|
||||
The `mysql2` connector library was tested. The differences are shown below,
|
||||
primarily stemming from the different quoting requirements and field types.
|
||||
|
||||
<details><summary><b>Differences</b> (click to show)</summary>
|
||||
|
||||
```js
|
||||
// highlight-start
|
||||
// define mapping between determined types and MySQL types
|
||||
const PG = { "n": "REAL", "s": "TEXT", "b": "TINYINT" };
|
||||
// highlight-end
|
||||
|
||||
function generate_sql(ws, wsname) {
|
||||
|
||||
// generate an array of objects from the data
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
|
||||
// types will map column headers to types, while hdr holds headers in order
|
||||
const types = {}, hdr = [];
|
||||
|
||||
// loop across each row object
|
||||
aoo.forEach(row =>
|
||||
// Object.entries returns a row of [key, value] pairs. Loop across those
|
||||
Object.entries(row).forEach(([k,v]) => {
|
||||
|
||||
// If this is first time seeing key, mark unknown and append header array
|
||||
if(!types[k]) { types[k] = "?"; hdr.push(k); }
|
||||
|
||||
// skip null and undefined
|
||||
if(v == null) return;
|
||||
|
||||
// check and resolve type
|
||||
switch(typeof v) {
|
||||
case "string": // strings are the broadest type
|
||||
types[k] = "s"; break;
|
||||
case "number": // if column is not string, number is the broadest type
|
||||
if(types[k] != "s") types[k] = "n"; break;
|
||||
case "boolean": // only mark boolean if column is unknown or boolean
|
||||
if("?b".includes(types[k])) types[k] = "b"; break;
|
||||
default: types[k] = "s"; break; // default to string type
|
||||
}
|
||||
})
|
||||
);
|
||||
|
||||
// The final array consists of the CREATE TABLE query and a series of INSERTs
|
||||
return [
|
||||
// generate CREATE TABLE query and return batch
|
||||
// highlight-next-line
|
||||
`CREATE TABLE ${wsname} (${hdr.map(h =>
|
||||
// highlight-next-line
|
||||
`${h} ${PG[types[h]]}`
|
||||
).join(", ")});`
|
||||
].concat(aoo.map(row => { // generate INSERT query for each row
|
||||
// entries will be an array of [key, value] pairs for the data in the row
|
||||
const entries = Object.entries(row);
|
||||
// fields will hold the column names and values will hold the values
|
||||
const fields = [], values = [];
|
||||
// check each key/value pair in the row
|
||||
entries.forEach(([k,v]) => {
|
||||
// skip null / undefined
|
||||
if(v == null) return;
|
||||
// highlight-next-line
|
||||
fields.push(`${k}`);
|
||||
// when the field type is numeric, `true` -> 1 and `false` -> 0
|
||||
if(types[k] == "n") values.push(typeof v == "boolean" ? (v ? 1 : 0) : v);
|
||||
// otherwise,
|
||||
// highlight-next-line
|
||||
else values.push(`"${v.toString().replaceAll('"', '""')}"`);
|
||||
})
|
||||
if(fields.length) return `INSERT INTO \`${wsname}\` (${fields.join(", ")}) VALUES (${values.join(", ")})`;
|
||||
})).filter(x => x); // filter out skipped rows
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
The first property of a query result is an array of objects that plays nice
|
||||
with `json_to_sheet`:
|
||||
|
||||
```js
|
||||
const aoa = await connection.query(`SELECT * FROM DataTable`)[0];
|
||||
const worksheet = XLSX.utils.json_to_sheet(aoa);
|
||||
```
|
||||
|
||||
|
||||
### Query Builders
|
||||
|
||||
Query builders are designed to simplify query generation and normalize field
|
||||
types and other database minutiae.
|
||||
|
||||
**Knex**
|
||||
|
||||
The result of a `SELECT` statement is an array of objects:
|
||||
|
||||
```js
|
||||
const aoo = await connection.select("*").from("DataTable");
|
||||
const worksheet = XLSX.utils.json_to_sheet(aoa);
|
||||
```
|
||||
|
||||
Knex wraps primitive types when creating a table. `generate_sql` takes a `knex`
|
||||
connection object and uses the API:
|
||||
|
||||
<details><summary><b>Generating a Table</b> (click to show)</summary>
|
||||
|
||||
```js
|
||||
// define mapping between determined types and Knex types
|
||||
const PG = { "n": "float", "s": "text", "b": "boolean" };
|
||||
|
||||
async function generate_sql(knex, ws, wsname) {
|
||||
|
||||
// generate an array of objects from the data
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
|
||||
// types will map column headers to types, while hdr holds headers in order
|
||||
const types = {}, hdr = [];
|
||||
|
||||
// loop across each row object
|
||||
aoo.forEach(row =>
|
||||
// Object.entries returns a row of [key, value] pairs. Loop across those
|
||||
Object.entries(row).forEach(([k,v]) => {
|
||||
|
||||
// If this is first time seeing key, mark unknown and append header array
|
||||
if(!types[k]) { types[k] = "?"; hdr.push(k); }
|
||||
|
||||
// skip null and undefined
|
||||
if(v == null) return;
|
||||
|
||||
// check and resolve type
|
||||
switch(typeof v) {
|
||||
case "string": // strings are the broadest type
|
||||
types[k] = "s"; break;
|
||||
case "number": // if column is not string, number is the broadest type
|
||||
if(types[k] != "s") types[k] = "n"; break;
|
||||
case "boolean": // only mark boolean if column is unknown or boolean
|
||||
if("?b".includes(types[k])) types[k] = "b"; break;
|
||||
default: types[k] = "s"; break; // default to string type
|
||||
}
|
||||
})
|
||||
);
|
||||
|
||||
await knex.schema.dropTableIfExists(wsname);
|
||||
await knex.schema.createTable(wsname, (table) => { hdr.forEach(h => { table[PG[types[h]] || "text"](h); }); });
|
||||
for(let i = 0; i < aoo.length; ++i) {
|
||||
if(!aoo[i] || !Object.keys(aoo[i]).length) continue;
|
||||
try { await knex.insert(aoo[i]).into(wsname); } catch(e) {}
|
||||
}
|
||||
return knex;
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
### MongoDB Structured Collections
|
||||
|
||||
MongoDB is a popular document-oriented database engine.
|
||||
|
||||
It is straightforward to treat collections as worksheets. Each object maps to
|
||||
a row in the table.
|
||||
|
||||
The official NodeJS connector is **`mongodb`**.
|
||||
|
||||
Worksheets can be generated from collections by using `Collection#find`. A
|
||||
`projection` can suppress the object ID field:
|
||||
|
||||
```js
|
||||
/* generate a worksheet from a collection */
|
||||
const aoo = await collection.find({}, {projection:{_id:0}}).toArray();
|
||||
const ws = utils.json_to_sheet(aoo);
|
||||
```
|
||||
|
||||
Collections can be populated with data from a worksheet using `insertMany`:
|
||||
|
||||
```js
|
||||
/* import data from a worksheet to a collection */
|
||||
const aoo = XLSX.utils.sheet_to_json(ws);
|
||||
await collection.insertMany(aoo, {ordered: true});
|
||||
```
|
||||
|
||||
<details><summary><b>Complete Example</b> (click to show)</summary>
|
||||
|
||||
:::caution
|
||||
|
||||
When this demo was last tested, the `mongodb` module did not work with Node 18.
|
||||
It was verified in Node 16.16.0.
|
||||
|
||||
:::
|
||||
|
||||
1) Install the dependencies:
|
||||
|
||||
```bash
|
||||
npm i --save https://cdn.sheetjs.com/xlsx-latest/xlsx-latest.tgz mongodb
|
||||
```
|
||||
|
||||
2) Start a MongoDB server on `localhost` (follow official instructions)
|
||||
|
||||
3) Save the following to `SheetJSMongoCRUD.mjs` (the key step is highlighted):
|
||||
|
||||
```js title="SheetJSMongoCRUD.mjs"
|
||||
import { writeFile, set_fs, utils } from 'xlsx';
|
||||
import * as fs from 'fs'; set_fs(fs);
|
||||
import { MongoClient } from 'mongodb';
|
||||
|
||||
const url = 'mongodb://localhost:27017/sheetjs';
|
||||
const db_name = 'sheetjs';
|
||||
|
||||
(async() => {
|
||||
/* Connect to mongodb server */
|
||||
const client = await MongoClient.connect(url, { useUnifiedTopology: true });
|
||||
|
||||
/* Sample data table */
|
||||
const db = client.db(db_name);
|
||||
try { await db.collection('pres').drop(); } catch(e) {}
|
||||
const pres = db.collection('pres');
|
||||
await pres.insertMany([
|
||||
{ name: "Barack Obama", idx: 44 },
|
||||
{ name: "Donald Trump", idx: 45 },
|
||||
{ name: "Joseph Biden", idx: 46 }
|
||||
], {ordered: true});
|
||||
|
||||
// highlight-start
|
||||
/* Export database to XLSX */
|
||||
const wb = utils.book_new();
|
||||
const aoo = await pres.find({}, {projection:{_id:0}}).toArray();
|
||||
const ws = utils.json_to_sheet(aoo);
|
||||
utils.book_append_sheet(wb, ws, "Presidents");
|
||||
writeFile(wb, "SheetJSMongoCRUD.xlsx");
|
||||
// highlight-end
|
||||
|
||||
/* Close connection */
|
||||
client.close();
|
||||
})();
|
||||
```
|
||||
|
||||
4) Run `node SheetJSMongoCRUD.mjs` and open `SheetJSMongoCRUD.xlsx`
|
||||
|
||||
</details>
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
---
|
||||
title: Web Workers
|
||||
pagination_prev: demos/data/index
|
||||
---
|
||||
|
||||
Parsing and writing large spreadsheets takes time. During the process, if the
|
||||
|
@ -203,8 +203,16 @@ declare module '*.xlsx' {
|
||||
6) Add the highlighted lines to `astro.config.mjs`:
|
||||
|
||||
```js title="astro.config.mjs"
|
||||
// highlight-start
|
||||
/* import `readFileSync` at the top of the script*/
|
||||
import { readFileSync } from 'fs';
|
||||
// highlight-end
|
||||
import { defineConfig } from 'astro/config';
|
||||
|
||||
|
||||
export default defineConfig({
|
||||
// highlight-start
|
||||
/* this vite section should be added as a property of the object */
|
||||
vite: {
|
||||
// this tells astro which extensions to handle
|
||||
assetsInclude: ['**/*.numbers', '**/*.xlsx'],
|
||||
|
@ -1,313 +0,0 @@
|
||||
---
|
||||
title: NoSQL Data Stores
|
||||
---
|
||||
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
So-called "Schema-less" databases allow for arbitrary keys and values within the
|
||||
entries in the database. K/V stores and Objects add additional restrictions.
|
||||
|
||||
:::note
|
||||
|
||||
These data stores are capable of storing structured data. Those use cases are
|
||||
covered in the [Database demo](/docs/demos/database).
|
||||
|
||||
:::
|
||||
|
||||
## Arbitrary Data to Spreadsheets
|
||||
|
||||
There is no natural way to translate arbitrarily shaped schemas to worksheets
|
||||
in a workbook. One common trick is to dedicate one worksheet to holding named
|
||||
keys. For example, considering the JS object:
|
||||
|
||||
```json
|
||||
{
|
||||
"title": "SheetDB",
|
||||
"metadata": {
|
||||
"author": "SheetJS",
|
||||
"code": 7262
|
||||
},
|
||||
"data": [
|
||||
{ "Name": "Barack Obama", "Index": 44 },
|
||||
{ "Name": "Donald Trump", "Index": 45 },
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
A dedicated worksheet should store the one-off named values:
|
||||
|
||||
```
|
||||
XXX| A | B |
|
||||
---+-----------------+---------+
|
||||
1 | Path | Value |
|
||||
2 | title | SheetDB |
|
||||
3 | metadata.author | SheetJS |
|
||||
4 | metadata.code | 7262 |
|
||||
```
|
||||
|
||||
## Data Stores
|
||||
|
||||
### Redis
|
||||
|
||||
Redis has 5 core data types: "String", List", "Set", "Sorted Set", and "Hash".
|
||||
Since the keys and values are limited to simple strings (and numbers), it is
|
||||
possible to store complete databases in a single worksheet.
|
||||
|
||||
![SheetJSRedis.xlsx](pathname:///nosql/sheetjsredis.png)
|
||||
|
||||
#### Mapping
|
||||
|
||||
The first row holds the data type and the second row holds the property name.
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="strings" label="Strings">
|
||||
|
||||
Strings can be stored in a unified String table. The first column holds keys
|
||||
and the second column holds values:
|
||||
|
||||
```
|
||||
XXX| A | B |
|
||||
---+---------+-------+
|
||||
1 | Strings | |
|
||||
2 | | |
|
||||
3 | Hello | World |
|
||||
4 | Sheet | JS |
|
||||
```
|
||||
|
||||
The SheetJS array-of-arrays representation of the string table is an array of
|
||||
key/value pairs:
|
||||
|
||||
```js
|
||||
let aoa = ["Strings"]; aoa.length = 2; // [ "Strings", empty ]
|
||||
const keys = await client.KEYS("*");
|
||||
for(let key of keys) {
|
||||
const type = await client.TYPE(key);
|
||||
if(type == "string") aoa.push([key, await client.GET(key)]);
|
||||
}
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="list" label="Lists">
|
||||
|
||||
Lists are unidimensional and can be stored in their own columns.
|
||||
|
||||
```
|
||||
XXX| C |
|
||||
---+---------+
|
||||
1 | List |
|
||||
2 | List1 |
|
||||
3 | List1V1 |
|
||||
4 | List1V2 |
|
||||
```
|
||||
|
||||
The SheetJS array-of-arrays representation of lists is a column of values.
|
||||
|
||||
```js
|
||||
if(type == "list") {
|
||||
let values = await client.LRANGE(key, 0, -1);
|
||||
aoa = [ ["List"], [key] ].concat(values.map(v => [v]));
|
||||
}
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="set" label="Sets">
|
||||
|
||||
Sets are unidimensional and can be stored in their own columns.
|
||||
|
||||
```
|
||||
XXX| D |
|
||||
---+-------+
|
||||
1 | Set |
|
||||
2 | Set1 |
|
||||
3 | Set1A |
|
||||
4 | Set1B |
|
||||
```
|
||||
|
||||
The SheetJS array-of-arrays representation of sets is a column of values.
|
||||
|
||||
```js
|
||||
if(type == "set") {
|
||||
let values = await client.SMEMBERS(key);
|
||||
aoa = [ ["Set"], [key] ].concat(values.map(v => [v]));
|
||||
}
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="zset" label="Sorted Sets">
|
||||
|
||||
Sorted Sets have an associated score which can be stored in the second column.
|
||||
|
||||
```
|
||||
XXX| E | F |
|
||||
---+---------+---+
|
||||
1 | Sorted | |
|
||||
2 | ZSet1 | |
|
||||
3 | Key1 | 1 |
|
||||
4 | Key2 | 2 |
|
||||
```
|
||||
|
||||
The SheetJS array-of-arrays representation is an array of key/score pairs.
|
||||
|
||||
```js
|
||||
if(type == "zset") {
|
||||
let values = await client.ZRANGE_WITHSCORES(key, 0, -1);
|
||||
aoa = [ ["Sorted"], [key] ].concat(values.map(v => [v.value, v.score]));
|
||||
}
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="hashes" label="Hashes">
|
||||
|
||||
Hashes are stored like the string table, with key and value columns in order.
|
||||
|
||||
```
|
||||
XXX| G | H |
|
||||
---+-------+-------+
|
||||
1 | Hash | |
|
||||
2 | Hash1 | |
|
||||
3 | Key1 | Val1 |
|
||||
4 | Key2 | Val2 |
|
||||
```
|
||||
|
||||
The SheetJS array-of-arrays representation is an array of key/value pairs.
|
||||
|
||||
```js
|
||||
if(type == "hash") {
|
||||
let values = await client.HGETALL(key);
|
||||
aoa = [ ["Hash"], [key] ].concat(Object.entries(values));
|
||||
}
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
#### Example
|
||||
|
||||
:::warning
|
||||
|
||||
The most recent version of the `redis` node module does not work with most
|
||||
versions of NodeJS. It is "ESM-only", requiring NodeJS 18 or later. As a result,
|
||||
this demo also requires NodeJS version 18.
|
||||
|
||||
Questions regarding the `redis` library and the decision to drop traditional
|
||||
NodeJS "CommonJS" module support should be directed to the Redis team.
|
||||
|
||||
:::
|
||||
|
||||
0) Set up and start a local Redis server
|
||||
|
||||
1) Download the following scripts:
|
||||
|
||||
- [`SheetJSRedis.mjs`](pathname:///nosql/SheetJSRedis.mjs)
|
||||
- [`SheetJSRedisTest.mjs`](pathname:///nosql/SheetJSRedisTest.mjs)
|
||||
|
||||
2) Install dependencies and run:
|
||||
|
||||
```bash
|
||||
npm i --save https://cdn.sheetjs.com/xlsx-latest/xlsx-latest.tgz redis
|
||||
node SheetJSRedisTest.mjs
|
||||
```
|
||||
|
||||
Inspect the output and compare with the data in `SheetJSRedisTest.mjs`.
|
||||
|
||||
Open `SheetJSRedis.xlsx` and verify the columns have the correct data
|
||||
|
||||
|
||||
### PouchDB
|
||||
|
||||
`Database#allDocs` is the standard approach for bulk data export. The generated
|
||||
row objects have additional `_id` and `_rev` keys that should be removed.
|
||||
|
||||
Nested objects must be flattened. The ["Tutorial"](/docs/getting-started/example)
|
||||
includes an example of constructing a simple array.
|
||||
|
||||
```js
|
||||
function export_pouchdb_to_xlsx(db) {
|
||||
/* fetch all rows, including the underlying data */
|
||||
db.allDocs({include_docs: true}, function(err, doc) {
|
||||
|
||||
/* pull the individual data rows */
|
||||
const aoo = doc.rows.map(r => {
|
||||
/* `rest` will include every field from `r` except for _id and _rev */
|
||||
const { _id, _rev, ...rest } = r;
|
||||
return rest;
|
||||
});
|
||||
|
||||
/* generate worksheet */
|
||||
const ws = XLSX.utils.json_to_sheet(aoo);
|
||||
|
||||
/* generate workbook and export */
|
||||
const wb = XLSX.utils.book_new();
|
||||
XLSX.utils.book_append_sheet(wb, ws, "Sheet1");
|
||||
XLSX.writeFile(wb, "SheetJSPouch.xlsx");
|
||||
});
|
||||
}
|
||||
```
|
||||
|
||||
<details><summary><b>Complete Example</b> (click to show)</summary>
|
||||
|
||||
0) Download the "Working Version" from the Getting Started guide.
|
||||
|
||||
The ZIP file should have `MD5` checksum `ac4da7cb0cade1be293ba222462f109c`:
|
||||
|
||||
```bash
|
||||
curl -LO https://github.com/nickcolley/getting-started-todo/archive/master.zip
|
||||
md5sum master.zip || md5 master.zip
|
||||
### the checksum will be printed
|
||||
```
|
||||
|
||||
If the download is unavailable, a mirror is available at
|
||||
<https://docs.sheetjs.com/pouchdb/master.zip>
|
||||
|
||||
1) Unzip the `master.zip` file and enter the folder:
|
||||
|
||||
```bash
|
||||
unzip master.zip
|
||||
cd getting-started-todo-master
|
||||
```
|
||||
|
||||
2) Edit `index.html` to reference the SheetJS library and add a button:
|
||||
|
||||
```html title="index.html"
|
||||
<body>
|
||||
<!-- highlight-start -->
|
||||
<script src="https://cdn.sheetjs.com/xlsx-latest/package/dist/xlsx.full.min.js"></script>
|
||||
<button id="xport">Export!</button>
|
||||
<!-- highlight-end -->
|
||||
<section id="todoapp">
|
||||
```
|
||||
|
||||
3) Just before the end of `app.js`, add a `click` event listener:
|
||||
|
||||
```js title="app.js"
|
||||
if (remoteCouch) {
|
||||
sync();
|
||||
}
|
||||
|
||||
// highlight-start
|
||||
document.getElementById("xport").addEventListener("click", function() {
|
||||
db.allDocs({include_docs: true}, function(err, doc) {
|
||||
const aoo = doc.rows.map(r => {
|
||||
const { _id, _rev, ... rest } = r.doc;
|
||||
return rest;
|
||||
});
|
||||
const ws = XLSX.utils.json_to_sheet(aoo);
|
||||
const wb = XLSX.utils.book_new(); XLSX.utils.book_append_sheet(wb, ws, "Sheet1");
|
||||
XLSX.writeFile(wb, "SheetJSPouch.xlsx");
|
||||
});
|
||||
});
|
||||
// highlight-end
|
||||
})();
|
||||
```
|
||||
|
||||
4) Start a local web server:
|
||||
|
||||
```bash
|
||||
npx http-server .
|
||||
```
|
||||
|
||||
Access `http://localhost:8080` from your browser. Add a few items and click
|
||||
the "Export!" button to generate a new file.
|
||||
|
||||
</details>
|
@ -16,9 +16,9 @@ run in the web browser, demos will include interactive examples.
|
||||
- [`Web Workers`](/docs/demos/worker)
|
||||
- [`Typed Arrays for Machine Learning`](/docs/demos/ml)
|
||||
- [`Local File Access`](/docs/demos/localfile)
|
||||
- [`LocalStorage and SessionStorage`](/docs/demos/database#localstorage-and-sessionstorage)
|
||||
- [`Web SQL Database`](/docs/demos/database#websql)
|
||||
- [`IndexedDB`](/docs/demos/database#indexeddb)
|
||||
- [`LocalStorage and SessionStorage`](/docs/demos/data/storageapi)
|
||||
- [`Web SQL Database`](/docs/demos/data/websql)
|
||||
- [`IndexedDB`](/docs/demos/data/indexeddb)
|
||||
|
||||
### Web Frameworks
|
||||
|
||||
@ -94,8 +94,8 @@ run in the web browser, demos will include interactive examples.
|
||||
- [`NodeJS Server-Side Processing`](/docs/demos/server#nodejs)
|
||||
- [`Deno Server-Side Processing`](/docs/demos/server#deno)
|
||||
- [`Headless Automation`](/docs/demos/headless)
|
||||
- [`Databases and Structured Data Stores`](/docs/demos/database)
|
||||
- [`NoSQL and Unstructured Data Stores`](/docs/demos/nosql)
|
||||
- [`Databases and Structured Data Stores`](/docs/demos/data)
|
||||
- [`NoSQL and Unstructured Data Stores`](/docs/demos/data)
|
||||
- [`Legacy Internet Explorer`](/docs/demos/frontend/legacy#internet-explorer)
|
||||
|
||||
### Bundlers and Tooling
|
||||
|
@ -733,7 +733,7 @@ creating worksheets from ML library exports (datasets stored in Typed Arrays).
|
||||
<details>
|
||||
<summary><b>Records from a database query (SQL or no-SQL)</b> (click to show)</summary>
|
||||
|
||||
The [`database` demo](/docs/demos/database/) includes examples of working with
|
||||
The [`data` demo](/docs/demos/data/) includes examples of working with
|
||||
databases and query results.
|
||||
|
||||
</details>
|
||||
|
@ -655,7 +655,7 @@ generating typed arrays and tensors from worksheet data.
|
||||
<details>
|
||||
<summary><b>Populating a database (SQL or no-SQL)</b> (click to show)</summary>
|
||||
|
||||
The [`database` demo](/docs/demos/database/) includes examples of working with databases and query results.
|
||||
The [`data` demo](/docs/demos/data/) includes examples of working with databases and query results.
|
||||
|
||||
</details>
|
||||
|
||||
|
@ -198,6 +198,9 @@ const config = {
|
||||
/* hosting */
|
||||
{ from: '/docs/demos/hosting/dropbox', to: '/docs/demos/cloud/dropbox/' },
|
||||
{ from: '/docs/demos/hosting/github', to: '/docs/demos/cloud/github/' },
|
||||
/* data */
|
||||
{ from: '/docs/demos/nosql', to: '/docs/demos/data/' },
|
||||
{ from: '/docs/demos/database', to: '/docs/demos/data/' },
|
||||
]
|
||||
}]
|
||||
]
|
||||
|
Loading…
Reference in New Issue
Block a user