---
title: Spreadsheet Data in Python
sidebar_label: Python DataFrames
description: Process structured data in Python DataFrames. Seamlessly integrate spreadsheets into your workflow with SheetJS. Analyze complex Excel spreadsheets with confidence.
pagination_prev: demos/index
pagination_next: demos/frontend/index
---
import current from '/version.js';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import CodeBlock from '@theme/CodeBlock';
[Pandas](https://pandas.pydata.org/) is a Python library for data analysis.
[SheetJS](https://sheetjs.com) is a JavaScript library for reading and writing
data from spreadsheets.
This demo uses SheetJS to process data from a spreadsheet and translate to the
Pandas DataFrame format. We'll explore how to load SheetJS from Python scripts,
generate DataFrames from workbooks, and write DataFrames back to workbooks.
The ["Complete Example"](#complete-example) includes a wrapper library that
simplifies importing and exporting spreadsheets.
:::info pass
Pandas includes limited support for reading spreadsheets (`pandas.from_excel`)
and writing XLSX spreadsheets (`pandas.DataFrame.to_excel`).
**SheetJS supports many common spreadsheet formats that Pandas cannot process.**
SheetJS operations also offer more flexibility in processing complex worksheets.
:::
:::note Tested Environments
This demo was tested in the following deployments:
| Architecture | JS Engine | Pandas | Python | Date |
|:-------------|:----------------|:-------|:-------|:-----------|
| `darwin-x64` | Duktape `2.7.0` | 2.2.1 | 3.12.2 | 2024-03-15 |
| `darwin-arm` | Duktape `2.7.0` | 2.2.2 | 3.12.3 | 2024-06-30 |
| `win10-x64` | Duktape `2.7.0` | 2.2.1 | 3.12.2 | 2024-03-25 |
| `win11-arm` | Duktape `2.7.0` | 2.2.2 | 3.11.5 | 2024-06-20 |
| `linux-x64` | Duktape `2.7.0` | 1.5.3 | 3.11.3 | 2024-03-21 |
| `linux-arm` | Duktape `2.7.0` | 1.5.3 | 3.11.2 | 2024-06-20 |
:::
## Integration Details
[`sheetjs.py`](pathname:///pandas/sheetjs.py) is a wrapper script that provides
helper methods for reading and writing spreadsheets. Installation notes are
included in the ["Complete Example"](#complete-example) section.
### JS in Python
JS code cannot be directly evaluated in Python implementations.
To run JS code from Python, JavaScript engines[^1] can be embedded in Python
modules or dynamically loaded using the `ctypes` foreign function library[^2].
This demo uses `ctypes` with the [Duktape engine](/docs/demos/engines/duktape).
### Wrapper
The script exports a class named `SheetJSWrapper`. It is a context manager that
initializes the Duktape engine and executes SheetJS scripts on entrance. All
work should be performed in the context:
```python title="Complete Example"
#!/usr/bin/env python3
from sheetjs import SheetJSWrapper
with SheetJSWrapper() as sheetjs:
# Parse file
wb = sheetjs.read_file("pres.numbers")
print("Loaded file pres.numbers")
# Get first worksheet name
first_ws_name = wb.get_sheet_names()[0]
print(f"Reading from sheet {first_ws_name}")
# Generate DataFrame from first worksheet
df = wb.get_df(first_ws_name)
print(df.info())
# Export DataFrame to XLSB
sheetjs.write_df(df, "SheetJSPandas.xlsb", sheet_name="DataFrame")
```
### Reading Files
`sheetjs.read_file` accepts a path to a spreadsheet file. It will parse the file
and return an object representing the workbook.
The `get_sheet_names` method of the workbook returns a list of sheet names.
The `get_df` method of the workbook generates a DataFrame from the workbook. The
specific sheet can be selected by passing the name.
For example, the following code reads `pres.numbers` and generates a DataFrame
from the second worksheet:
```python title="Generating a DataFrame from the second worksheet"
with SheetJSWrapper() as sheetjs:
# Parse file
wb = sheetjs.read_file(path)
# Generate DataFrame from second worksheet
ws_name = wb.get_sheet_names()[1]
df = wb.get_df(ws_name)
# Print metadata
print(df.info())
```
Under the hood, `sheetjs.py` performs the following steps:
```mermaid
flowchart LR
file[(workbook\nfile)]
subgraph SheetJS operations
bytes(Byte\nstring)
wb((SheetJS\nWorkbook))
csv(CSV\nstring)
end
subgraph Pandas operations
stream(CSV\nStream)
df[(Pandas\nDataFrame)]
end
file --> |`open`/`read`\nPython ops| bytes
bytes --> |`XLSX.read`\nParse Bytes| wb
wb --> |`sheet_to_csv`\nExtract Data| csv
csv --> |`StringIO`\nPython ops| stream
stream --> |`read_csv`\nParse CSV| df
```
1) Pure Python operations read the spreadsheet file and generate a byte string.
2) SheetJS libraries parse the string and generate a clean CSV.
- The `read` method[^3] parses file bytes into a SheetJS workbook object[^4]
- After selecting a worksheet, `sheet_to_csv`[^5] generates a CSV string
3) Python operations convert the CSV string to a stream object.[^6]
4) The Pandas `read_csv` method[^7] ingests the stream and generate a DataFrame.
### Writing Files
`sheetjs.write_df` accepts a DataFrame and a path. It will attempt to export
the data to a spreadsheet file.
For example, the following code exports a DataFrame to `SheetJSPandas.xlsb`:
```python title="Exporting a DataFrame to XLSB"
with SheetJSWrapper() as sheetjs:
# Export DataFrame to XLSB
sheetjs.write_df(df, "SheetJSPandas.xlsb", sheet_name="DataFrame")
```
Under the hood, `sheetjs.py` performs the following steps:
```mermaid
flowchart LR
subgraph Pandas operations
df[(Pandas\nDataFrame)]
json(JSON\nString)
end
subgraph SheetJS operations
aoo(array of\nobjects)
wb((SheetJS\nWorkbook))
u8a(File\nbytes)
end
file[(workbook\nfile)]
df --> |`to_json`\nPandas ops| json
json --> |`JSON.parse`\nJS Engine| aoo
aoo --> |`json_to_sheet`\nSheetJS Ops| wb
wb --> |`XLSX.write`\nUint8Array| u8a
u8a --> |`open`/`write`\nPython ops| file
```
1) The Pandas DataFrame `to_json` method[^8] generates a JSON string.
2) JS engine operations translate the JSON string to an array of objects.
3) SheetJS libraries process the data array and generate file bytes.
- The `json_to_sheet` method[^9] creates a SheetJS sheet object from the data.
- The `book_new` method[^10] creates a SheetJS workbook that includes the sheet.
- The `write` method[^11] generates the spreadsheet file bytes.
4) Pure Python operations write the bytes to file.
## Complete Example
This example will extract data from an Apple Numbers spreadsheet and generate a
DataFrame. The DataFrame will be exported to the binary XLSB spreadsheet format.
:::note pass
The Windows build requires Visual Studio with "Desktop development with C++".
Commands must be run in a "Native Tools Command Prompt" session.
:::
0) Install Pandas:
```bash
python3 -m pip install pandas
```
:::info pass
On macOS and Linux, the install command may require root access:
```bash
sudo python3 -m pip install pandas
```
:::
:::note pass
When `pip` is not installed, the command will fail:
```bash
/usr/bin/python3: No module named pip
```
`pip` must be installed. On Arch Linux-based platforms including the Steam Deck,
`python-pip` can be installed through the package manager:
```bash
sudo pacman -Syu python-pip
```
:::
:::caution pass
In some local tests, the install failed with the following error:
```
error: externally-managed-environment
```
Pandas must be installed through the package manager:
- Debian and Ubuntu distributions:
```bash
sudo apt-get install python3-pandas
```
- Arch Linux-based platforms including the Steam Deck:
```bash
sudo pacman -Syu python-pandas
```
- macOS systems with a Python version from Homebrew:
```bash
sudo python3 -m pip install pandas --break-system-packages
```
:::
1) Build the Duktape shared library:
```bash
curl -LO https://duktape.org/duktape-2.7.0.tar.xz
tar -xJf duktape-2.7.0.tar.xz
cd duktape-2.7.0
make -f Makefile.sharedlibrary
cd ..
```
```bash
curl -LO https://duktape.org/duktape-2.7.0.tar.xz
tar -xJf duktape-2.7.0.tar.xz
cd duktape-2.7.0
make -f Makefile.sharedlibrary
cd ..
```
- Download and extract the source tarball. Commands must be run in WSL `bash`:
```bash
curl -LO https://duktape.org/duktape-2.7.0.tar.xz
tar -xJf duktape-2.7.0.tar.xz
```
(Run `bash`, then run the aforementioned commands, then run `exit` to exit WSL)
- Enter the source folder:
```bash
cd duktape-2.7.0
```
- Edit `src\duk_config.h` and add the highlighted lines to the end of the file:
```c title="src\duk_config.h (add highlighted lines)"
#endif /* DUK_CONFIG_H_INCLUDED */
// highlight-start
#define DUK_EXTERNAL_DECL extern __declspec(dllexport)
#define DUK_EXTERNAL __declspec(dllexport)
// highlight-end
```
- Build the Duktape DLL:
```cmd
cl /O2 /W3 /Isrc /LD /DDUK_SINGLE_FILE /DDUK_F_DLL_BUILD /DDUK_F_WINDOWS /DDUK_COMPILING_DUKTAPE src\\duktape.c
```
- Move up to the parent directory:
```bash
cd ..
```
2) Copy the shared library to the current folder. When the demo was last tested,
the shared library file name differed by platform:
| OS | name |
|:--------|:--------------------------|
| macOS | `libduktape.207.20700.so` |
| Linux | `libduktape.so.207.20700` |
| Windows | `duktape.dll` |
```bash
cp duktape-*/libduktape.* .
```
```bash
cp duktape-*/libduktape.* .
```
```cmd
copy duktape-2.7.0\duktape.dll .
```
3) Download the SheetJS Standalone script and move to the project directory:
{`\
curl -LO https://cdn.sheetjs.com/xlsx-${current}/package/dist/shim.min.js
curl -LO https://cdn.sheetjs.com/xlsx-${current}/package/dist/xlsx.full.min.js`}
4) Download the following test scripts and files:
- [`pres.numbers` test file](https://docs.sheetjs.com/pres.numbers)
- [`sheetjs.py` script](pathname:///pandas/sheetjs.py)
- [`SheetJSPandas.py` script](pathname:///pandas/SheetJSPandas.py)
```bash
curl -LO https://docs.sheetjs.com/pres.numbers
curl -LO https://docs.sheetjs.com/pandas/sheetjs.py
curl -LO https://docs.sheetjs.com/pandas/SheetJSPandas.py
```
5) Edit the `sheetjs.py` script.
The `lib` variable declares the path to the library:
```python title="sheetjs.py (edit highlighted line)"
# highlight-next-line
lib = "libduktape.207.20700.so"
```
The name of the library is `libduktape.207.20700.so`:
```python title="sheetjs.py (change highlighted line)"
# highlight-next-line
lib = "libduktape.207.20700.so"
```
The name of the library is `libduktape.so.207.20700`:
```python title="sheetjs.py (change highlighted line)"
# highlight-next-line
lib = "./libduktape.so.207.20700"
```
The name of the library is `duktape.dll`:
```python title="sheetjs.py (change highlighted line)"
# highlight-next-line
lib = ".\\duktape.dll"
```
In addition, the following changes must be made:
- `str_to_c` must be defined as follows:
```python title="sheetjs.py (replace str_to_c function)"
def str_to_c(s):
b = s
if type(b) == str: b = s.encode("latin1")
return [c_char_p(b), len(b)]
```
- `eval_file` must `open` with mode `rb`:
```python title="sheetjs.py (edit highlighted line)"
def eval_file(ctx, path):
# highlight-next-line
with open(path, "rb") as f:
code = f.read()
```
6) Run the script:
```bash
python3 SheetJSPandas.py pres.numbers
```
If successful, the script will display DataFrame metadata:
```
RangeIndex: 5 entries, 0 to 4
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Name 5 non-null object
1 Index 5 non-null int64
dtypes: int64(1), object(1)
```
It will also export the DataFrame to `SheetJSPandas.xlsb`. The file can be
inspected with a spreadsheet editor that supports XLSB files.
## Other Libraries
Other Python DataFrame libraries mirror the Pandas DataFrame API.
### Polars
[Polars](https://pola.rs/) is a similar DataFrame library that offers many
features from Pandas DataFrames.
:::info pass
Polars includes limited support for reading and writing spreadsheets by wrapping
third-party libraries. In practice, Polars communicates with the third-party
libraries using intermediate CSV files.[^12]
**SheetJS supports many common spreadsheet formats that Polars cannot process.**
SheetJS operations also offer more flexibility in processing complex worksheets.
:::
The Pandas example requires a few slight changes to work with Polars:
- Polars DataFrames expose `write_json` instead of `to_json`:
```diff
- json = df.to_json(orient="records")
+ json = df.write_json(row_oriented=True)
```
- Polars DataFrames do not expose `info`
#### Polars Demo
:::note Tested Environments
This demo was tested in the following deployments:
| Architecture | JS Engine | Polars | Python | Date |
|:-------------|:----------------|:--------|:-------|:-----------|
| `darwin-x64` | Duktape `2.7.0` | 0.20.15 | 3.12.2 | 2024-03-15 |
| `darwin-arm` | Duktape `2.7.0` | 0.20.31 | 3.12.3 | 2024-06-30 |
| `win10-x64` | Duktape `2.7.0` | 0.20.16 | 3.12.2 | 2024-03-25 |
| `win10-arm` | Duktape `2.7.0` | 0.20.31 | 3.11.5 | 2024-06-20 |
| `linux-x64` | Duktape `2.7.0` | 0.20.16 | 3.11.3 | 2024-03-21 |
| `linux-arm` | Duktape `2.7.0` | 0.20.31 | 3.11.2 | 2024-06-20 |
:::
0) Follow the [Pandas "Complete Example"](#complete-example) through the end.
1) Edit `sheetjs.py`.
- Near the top of the script, change the import from `pandas` to `polars`:
```python title="sheetjs.py (edit highlighted line)"
from io import StringIO
# highlight-next-line
from polars import read_csv
duk = CDLL(lib)
```
- Within the `export_df_to_wb` function, change the `df.to_json` line:
```python title="sheetjs.py (edit highlighted line)"
def export_df_to_wb(ctx, df, path, sheet_name="Sheet1", book_type=None):
# highlight-next-line
json = df.write_json(row_oriented=True)
```
2) Edit `SheetJSPandas.py`.
- In the `process` function, change `df.info()` to `df`:
```python title="SheetJSPandas.py (edit highlighted line)"
# Generate DataFrame from first worksheet
df = wb.get_df()
# highlight-next-line
print(df)
```
Change the export filename from `SheetJSPandas.xlsb` to `SheetJSPolars.xlsb`:
```python title="SheetJSPandas.py (edit highlighted line)"
# Export DataFrame to XLSB
# highlight-next-line
sheetjs.write_df(df, "SheetJSPolars.xlsb", sheet_name="DataFrame")
```
3) Install Polars:
```bash
python3 -m pip install polars
```
:::info pass
On macOS and Linux, the install command may require root access:
```bash
sudo python3 -m pip install pandas
```
:::
:::info pass
On Windows, the `C++ Clang Compiler for Windows` component must be installed
through the Visual Studio installer.
:::
:::caution pass
On Arch Linux-based platforms including the Steam Deck, the install may fail:
```
error: externally-managed-environment
```
It is recommended to use a virtual environment for Polars.
`venv` must be installed through the system package manager:
- Debian and Ubuntu distributions:
```bash
sudo apt-get install python3.11-venv
```
- `venv` is included in the `python` package in Arch Linux-based platforms.
- macOS systems with a Python version from Homebrew:
```bash
brew install pyenv-virtualenv
```
After installing `venv`, the following commands set up the virtual environment:
```bash
mkdir sheetjs-polars
cd sheetjs-polars
python3 -m venv .
./bin/pip install polars
cp ../libduktape.* ../SheetJSPandas.py ../sheetjs.py ../*.js ../*.numbers .
```
:::
4) Run the script:
```bash
python3 SheetJSPandas.py pres.numbers
```
:::note pass
If the virtual environment was configured in the previous step, run:
```bash
./bin/python3 SheetJSPandas.py pres.numbers
```
:::
If successful, the script will display DataFrame data:
```
shape: (5, 2)
┌──────────────┬───────┐
│ Name ┆ Index │
│ --- ┆ --- │
│ str ┆ i64 │
╞══════════════╪═══════╡
│ Bill Clinton ┆ 42 │
│ GeorgeW Bush ┆ 43 │
│ Barack Obama ┆ 44 │
│ Donald Trump ┆ 45 │
│ Joseph Biden ┆ 46 │
└──────────────┴───────┘
```
It will also export the DataFrame to `SheetJSPolars.xlsb`. The file can be
inspected with a spreadsheet editor that supports XLSB files.
[^1]: See ["Other Languages"](/docs/demos/engines/) for more examples.
[^2]: See [`ctypes`](https://docs.python.org/3/library/ctypes.html) in the Python documentation.
[^3]: See [`read` in "Reading Files"](/docs/api/parse-options)
[^4]: See ["Workbook Object"](/docs/csf/book)
[^5]: See [`sheet_to_csv` in "Utilities"](/docs/api/utilities/csv#delimiter-separated-output)
[^6]: See [the examples in "IO tools"](https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html) in the Pandas documentation.
[^7]: See [`pandas.read_csv`](https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html) in the Pandas documentation.
[^8]: See [`pandas.DataFrame.to_json`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html) in the Pandas documentation.
[^9]: See [`json_to_sheet` in "Utilities"](/docs/api/utilities/array#array-of-objects-input)
[^10]: See [`book_new` in "Utilities"](/docs/api/utilities/wb)
[^11]: See [`write` in "Writing Files"](/docs/api/write-options)
[^12]: As explained [in the Polars documentation](https://docs.pola.rs/py-polars/html/reference/api/polars.read_excel.html), "... the target Excel sheet is first converted to CSV ... and then parsed with Polars’ `read_csv()` function."