frac/README.md

110 lines
3.1 KiB
Markdown
Raw Normal View History

2013-12-14 07:11:37 +00:00
# frac
Rational approximation to a floating point number with bounded denominator.
Uses the [Mediant Method](https://en.wikipedia.org/wiki/Mediant_method).
2013-12-14 07:11:37 +00:00
This module also provides an implementation of the continued fraction method as
described by Aberth in "A method for exact computation with rational numbers".
## Installation
2013-12-14 07:11:37 +00:00
### JS
With [npm](https://www.npmjs.org/package/frac):
2013-12-14 07:11:37 +00:00
$ npm install frac
In the browser:
<script src="frac.js"></script>
2014-05-01 03:21:53 +00:00
The script will manipulate `module.exports` if available (e.g. in a CommonJS
`require` context). This is not always desirable. To prevent the behavior,
define `DO_NOT_EXPORT_FRAC`
### Python
From [PyPI](https://pypi.python.org/pypi/frac):
$ pip install frac
2014-05-01 03:21:53 +00:00
## Usage
In all cases, the relevant function takes 3 arguments:
2013-12-14 07:11:37 +00:00
- `x` the number we wish to approximate
- `D` the maximum denominator
- `mixed` if true, return a mixed fraction; if false, improper
2013-12-14 07:11:37 +00:00
The return value is an array of the form `[quot, num, den]` where `quot==0`
for improper fractions. `quot <= x` for mixed fractions, which may lead to some
unexpected results when rendering negative numbers.
2013-12-14 07:11:37 +00:00
### JS
The exported `frac` function implements the Mediant method.
`frac.cont` implements the Aberth algorithm
2013-12-14 07:11:37 +00:00
For example:
```js
2013-12-14 07:11:37 +00:00
> // var frac = require('frac'); // uncomment this line if in node
> frac(1.3, 9); // [ 0, 9, 7 ] // 1.3 ~ 9/7
> frac(1.3, 9, true); // [ 1, 2, 7 ] // 1.3 ~ 1 + 2/7
> frac(-1.3, 9); // [ 0, -9, 7 ] // -1.3 ~ -9/7
> frac(-1.3, 9, true); // [ -2, 5, 7 ] // -1.3 ~ -2 + 5/7
> frac.cont(1.3, 9); // [ 0, 4, 3 ] // 1.3 ~ 4/3
> frac.cont(1.3, 9, true); // [ 1, 1, 3 ] // 1.3 ~ 1 + 1/3
> frac.cont(-1.3, 9); // [ 0, -4, 3 ] // -1.3 ~ -4/3
> frac.cont(-1.3, 9, true); // [ -2, 2, 3 ] // -1.3 ~ -2 + 2/3
2013-12-14 07:11:37 +00:00
```
### Python
`frac.med` implements Mediant method.
`frac.cont` implements Aberth algorithm
For example:
```py
>>> import frac
>>> frac.med(1.3, 9) # [ 0, 9, 7 ]
>>> frac.med(1.3, 9, True) # [ 1, 2, 7 ]
>>> frac.med(-1.3, 9) # [ 0, -9, 7 ]
>>> frac.med(-1.3, 9, True) # [ -2, 5, 7 ]
>>> frac.cont(1.3, 9) # [ 0, 4, 3 ]
>>> frac.cont(1.3, 9, True) # [ 1, 1, 3 ]
>>> frac.cont(-1.3, 9) # [ 0, -4, 3 ]
>>> frac.cont(-1.3, 9, True) # [ -2, 2, 3 ]
```
## Testing
2014-05-01 03:21:53 +00:00
`make test` will run the node-based tests.
Tests generated from Excel have 4 columns. To produce a similar test:
- Column A contains the raw values
- Column B format "Up to one digit (1/4)"
- Column C format "Up to two digits (21/25)"
- Column D format "Up to three digits (312/943)"
## License
Please consult the attached LICENSE file for details. All rights not explicitly
granted by the Apache 2.0 license are reserved by the Original Author.
## Badges
2014-05-01 02:32:25 +00:00
[![Build Status](https://travis-ci.org/SheetJS/frac.svg?branch=master)](https://travis-ci.org/SheetJS/frac)
[![Coverage Status](http://img.shields.io/coveralls/SheetJS/frac/master.svg)](https://coveralls.io/r/SheetJS/frac?branch=master)
2014-05-01 02:32:25 +00:00
[![Analytics](https://ga-beacon.appspot.com/UA-36810333-1/SheetJS/frac?pixel)](https://github.com/SheetJS/frac)