# Getting Codepages The fields of the pages.csv manifest are `codepage,url,bytes` (SBCS=1, DBCS=2) ```>pages.csv 37,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/EBCDIC/CP037.TXT,1 437,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP437.TXT,1 500,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/EBCDIC/CP500.TXT,1 737,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP737.TXT,1 775,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP775.TXT,1 850,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP850.TXT,1 852,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP852.TXT,1 855,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP855.TXT,1 857,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP857.TXT,1 860,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP860.TXT,1 861,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP861.TXT,1 862,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP862.TXT,1 863,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP863.TXT,1 864,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP864.TXT,1 865,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP865.TXT,1 866,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP866.TXT,1 869,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/PC/CP869.TXT,1 874,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP874.TXT,1 875,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/EBCDIC/CP875.TXT,1 932,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP932.TXT,2 936,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT,2 949,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP949.TXT,2 950,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP950.TXT,2 1026,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/EBCDIC/CP1026.TXT,1 1250,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1250.TXT,1 1251,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1251.TXT,1 1252,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1252.TXT,1 1253,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1253.TXT,1 1254,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1254.TXT,1 1255,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1255.TXT,1 1256,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1256.TXT,1 1257,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1257.TXT,1 1258,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1258.TXT,1 ``` Note that the Windows rendering is used for the Mac code pages. The primary difference is the use of the private `0xF8FF` code (which renders as an Apple logo on macs but as garbage on other operating systems). It may be desirable to fall back to the behavior, in which case the files are under APPLE and not MICSFT. Codepages are an absolute pain :/ ```>pages.csv 10000,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/MAC/ROMAN.TXT,1 10006,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/MAC/GREEK.TXT,1 10007,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/MAC/CYRILLIC.TXT,1 10029,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/MAC/LATIN2.TXT,1 10079,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/MAC/ICELAND.TXT,1 10081,http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/MAC/TURKISH.TXT,1 ``` The numbering scheme for the `ISO-8859-X` series is `28590 + X`: ```>pages.csv 28591,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-1.TXT,1 28592,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-2.TXT,1 28593,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-3.TXT,1 28594,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-4.TXT,1 28595,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-5.TXT,1 28596,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-6.TXT,1 28597,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-7.TXT,1 28598,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-8.TXT,1 28599,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-9.TXT,1 28600,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-10.TXT,1 28601,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-11.TXT,1 28603,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-13.TXT,1 28604,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-14.TXT,1 28605,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-15.TXT,1 28606,http://www.unicode.org/Public/MAPPINGS/ISO8859/8859-16.TXT,1 ``` ## Manually-generated codepages Other codepages are not easily available. They were manually generated: Code Page 858 (Multilingual Latin I + Euro) is identical to 850 except for point 0xD5 (which now maps to the Euro symbol) ```>pages.csv 858,,1 ``` Developing International Software for Windows 95 and Windows NT (Nadine Kano) describes the following codepages (scanned pages available on MSDN): - 708 ASMO-708,Arabic (ASMO 708) ```>pages.csv 708,,1 ``` MSDN Go Global Developer Center describes the following codepages: - 720 (Windows OEM Arabic) ```>pages.csv 720,,1 ``` The known missing codepages are enumerated in the README. ## Building Notes The script `make.sh` (described later) will get these files and massage the data (printing code-unicode pairs). The eventual tables are dropped in the paths `./codepages/.TBL`. For example, the last 10 lines of `10000.TBL` are ```> 0xF6 0x02C6 0xF7 0x02DC 0xF8 0x00AF 0xF9 0x02D8 0xFA 0x02D9 0xFB 0x02DA 0xFC 0x00B8 0xFD 0x02DD 0xFE 0x02DB 0xFF 0x02C7 ``` which implies that code 0xF6 is `String.fromCharCode(0x02C6)` and vice versa. # Building the script `make.njs` takes a codepage argument, reads the corresponding table file and generates JS code for encoding and decoding: ## Raw Codepages ```>make.njs #!/usr/bin/env node var argv = process.argv.slice(1), fs = require('fs'); if(argv.length < 2) { console.error("usage: make.njs [variable]"); process.exit(22); /* EINVAL */ } var cp = argv[1]; var jsvar = argv[2] || "cptable"; var x = fs.readFileSync("codepages/" + cp + ".TBL","utf8"); var maxcp = 0; var y = x.split("\n").map(function(z) { var w = z.split("\t"); if(w.length < 2) return w; return [Number(w[0]), Number(w[1])]; }).filter(function(z) { return z.length > 1; }); ``` The DBCS and SBCS code generation strategies are different. The maximum code is used to distinguish (max 0xFF for SBCS). ``` for(var i = 0; i != y.length; ++i) if(y[i][0] > maxcp) maxcp = y[i][0]; var enc = {}, dec = (maxcp < 256 ? [] : {}); for(var i = 0; i != y.length; ++i) { dec[y[i][0]] = String.fromCharCode(y[i][1]); enc[String.fromCharCode(y[i][1])] = y[i][0]; } var odec, oenc, outstr; if(maxcp < 256) { ``` The unicode character `0xFFFD` (REPLACEMENT CHARACTER) is used as a placeholder for characters that are not specified in the map (for example, `0xF0` is not in code page 10000). For SBCS, the idea is to embed a raw string with the contents of the 256 codes. The `dec` field is merely a split of the string, and `enc` is an eversion: ``` for(var i = 0; i != 256; ++i) if(typeof dec[i] === "undefined") dec[i] = String.fromCharCode(0xFFFD); odec = JSON.stringify(dec.join("")) + '.split("")' outstr = '(function(){ var d = ' + odec + ', e = {}; for(var i=0;i!=d.length;++i) if(d[i].charCodeAt(0) !== 0xFFFD)e[d[i]] = i; return {"enc": e, "dec": d }; })();'; } else { ``` DBCS is similar, except that the space is sliced into 256-byte chunks (strings are only generated for those high-bytes represented in the codepage). The strategy is to construct an array-of-arrays so that `dd[high][low]` is the character associated with the code. This array is combined at runtime to yield the complete decoding object (and the encoding object is an eversion): ``` var dd = []; for(var i in dec) if(dec.hasOwnProperty(i)) { if(typeof dd[i >> 8] === "undefined") dd[i >> 8] = []; dd[i >> 8][i % 256] = dec[i]; } outstr = '(function(){ var d = {}, e = {}, D = [], j;\n'; for(var i = 0; i != 256; ++i) if(dd[i]) { for(var j = 0; j != 256; ++j) if(typeof dd[i][j] === "undefined") dd[i][j] = String.fromCharCode(0xFFFD); outstr += 'D[' + i + '] = ' + JSON.stringify(dd[i].join("")) + '.split("");\n'; outstr += 'for(j = 0; j != D[' + i + '].length; ++j) if(D[' + i + '][j].charCodeAt(0) !== 0xFFFD) { e[D[' + i + '][j]] = ' + i + ' * 256 + j; d[' + i + ' * 256 + j] = D[' + i + '][j];}\n' } outstr += 'return {"enc": e, "dec": d }; })();'; } console.log(jsvar + "[" + cp + "] = " + outstr); ``` `make.sh` generates the tables used by `make.njs`. The raw unicode TXT files are columnar: `code unicode #comments`. For example, the last 10 lines of the text file ROMAN.TXT (for CP 10000) are: ```> 0xF6 0x02C6 #MODIFIER LETTER CIRCUMFLEX ACCENT 0xF7 0x02DC #SMALL TILDE 0xF8 0x00AF #MACRON 0xF9 0x02D8 #BREVE 0xFA 0x02D9 #DOT ABOVE 0xFB 0x02DA #RING ABOVE 0xFC 0x00B8 #CEDILLA 0xFD 0x02DD #DOUBLE ACUTE ACCENT 0xFE 0x02DB #OGONEK 0xFF 0x02C7 #CARON ``` In processing the data, the comments (after the `#`) are stripped and undefined elements (like `0x7F` for CP 10000) are removed. ```>make.sh #!/bin/bash INFILE=${1:-pages.csv} OUTFILE=${2:-cptable.js} JSVAR=${3:-cptable} mkdir -p codepages bits rm -f $OUTFILE $OUTFILE.tmp echo "/*jshint -W100 */" > $OUTFILE.tmp echo "var $JSVAR = {};" >> $OUTFILE.tmp awk -F, '{print $1, $2, $3}' $INFILE | while read cp url cptype; do echo $cp $url if [ ! -e codepages/$cp.TBL ]; then curl $url | sed 's/#.*//g' | awk 'NF==2' > codepages/$cp.TBL fi echo "if(typeof $JSVAR === 'undefined') $JSVAR = {};" > bits/$cp.js.tmp node make.njs $cp $JSVAR | tee -a bits/$cp.js.tmp >> $OUTFILE.tmp sed 's/"\([0-9]+\)":/\1:/g' bits/$cp.js rm -f bits/$cp.js.tmp done echo "if(typeof module !== 'undefined') module.exports = $JSVAR;" >> $OUTFILE.tmp sed 's/"\([0-9]+\)":/\1:/g' <$OUTFILE.tmp >$OUTFILE rm -f $OUTFILE.tmp ``` ## Utilities The encode and decode functions are kept in a separate script: ```>cputils.js if(typeof cptable === "undefined" && typeof require !== "undefined") var cptable = require('./cptable'); (function(cpt){ ``` There are more efficient ways to handle certain codepages, so they are handled in a different manner: ```>cputils.js var magic = { "1200":"utf16le", "1201":"utf16be", "12000":"utf32le", "12001":"utf32be", "20127":"ascii", "65000":"utf7", "65001":"utf8" }; ``` Both encode and decode deal with data represented as: - String (encode expects UTF-8 string, decode interprets UTF-8 chars as codes) - Array (encode expects array of UTF-8 characters, decode expects numbers) - Buffer (encode expects UTF-8 string, decode expects codepoints). The `ofmt` variable controls the return value (`str`, `arr`, `buf` respectively) while the input format is automatically determined. ```>cputils.js var encode = function(cp, data, ofmt) { var out = [], w, i, j = 0; if(cpt[cp]) { for(i = 0; i != data.length; ++i, ++j) { w = cpt[cp].enc[data[i]]; out[j] = w % 256; if(w > 255) { out[j] = (w/256)|0; out[++j] = w%256; } } } else if(magic[cp]) switch(magic[cp]) { case "utf8": for(i = 0; i != data.length; ++i, ++j) { w = data[i].charCodeAt(0); if(w <= 0x007F) out[j] = w; else if(w <= 0x07FF) { out[j] = 192 + (w >> 6); out[++j] = 128 + (w % 64); } else { out[j] = 224 + (w >> 12); out[++j] = 128 + ((w >> 6) % 64); out[++j] = 128 + (w % 64); } } break; default: throw "Unsupported magic: " + cp + " " + magic[cp]; } else throw new Error("Unrecognized CP: " + cp); if(ofmt == 'str') return out.map(function(x) { return String.fromCharCode(x); }).join(""); if(ofmt == 'buf') return new Buffer(out); return out; }; var decode = function(cp, data, endian) { var out = "", w, i, j = 1; if(cpt[cp]) for(i = 0; i != data.length; i+=j) { j = 1; w = cpt[cp].dec[data[i]]; if(typeof w === 'undefined') { j = 2; w = cpt[cp].dec[endian ? data[i]+data[i+1]*256 : data[i]*256 + data[i+1]]; } if(typeof w === 'undefined') throw 'Unrecognized code: ' + data[i] + ' ' + data[i+j-1] + ' ' + i + ' ' + j; out += w; } else if(magic[cp]) switch(magic[cp]) { case "utf8": for(i = 0; i != data.length; i+=j) { j = 1; if(data[i] < 128) w = data[i]; else if(data[i] < 224) { w = (data[i]&31)*64+(data[i+1]&63); j=2; } else { w=(data[i]&15)*4096+(data[i+1]&63)*64+(data[i+2]&63); j=3; } out += String.fromCharCode(w); } break; default: throw "Unsupported magic: " + cp + " " + magic[cp]; } return out; }; var hascp = function(cp) { return cpt[cp] || magic[cp]; }; cpt.utils = { decode: decode, encode: encode, hascp: hascp, magic: magic }; })(cptable); if(typeof module !== "undefined") module.exports = cptable; ``` # Tests The tests include JS validity tests (requiring or eval'ing code): ```>test.js var fs = require('fs'), vm = require('vm'); var cptable, sbcs; describe('source', function() { it('should load node', function() { cptable = require('./'); }); it('should load sbcs', function() { sbcs = require('./sbcs'); }); it('should process bits', function() { var files = fs.readdirSync('bits').filter(function(x){return x.substr(-3)==".js";}); files.forEach(function(x) { vm.runInThisContext(fs.readFileSync('./bits/' + x)); }); }); }); ``` The consistency tests make sure that encoding and decoding are pseudo inverses: ```>test.js describe('consistency', function() { cptable = require('./'); Object.keys(cptable).filter(function(w) { return w != "utils"; }).forEach(function(x) { it('should consistently process CP ' + x, function() { var cp = cptable[x]; Object.keys(cp.dec).forEach(function(d) { if(cp.enc[cp.dec[d]] != d) { if(typeof cp.enc[cp.dec[d]] !== "undefined") return; if(cp.dec[d].charCodeAt(0) == 0xFFFD) return; if(cp.dec[cp.enc[cp.dec[d]]] === cp.dec[d]) return; throw x + " e.d[" + d + "] = " + cp.enc[cp.dec[d]] + "; d[" + d + "]=" + cp.dec[d] + "; d.e.d[" + d + "] = " + cp.dec[cp.enc[cp.dec[d]]]; } }); Object.keys(cp.enc).forEach(function(e) { if(cp.dec[cp.enc[e]] != e) { throw x + " d.e[" + e + "] = " + cp.dec[cp.enc[e]] + "; e[" + e + "]=" + cp.enc[e] + "; e.d.e[" + e + "] = " + cp.enc[cp.dec[cp.enc[e]]]; } }); }); }); }); ``` The `testfile` helper function reads a file and compares to node's read facilities: ```>test.js function testfile(f,cp,type) { var d = fs.readFileSync(f); var x = fs.readFileSync(f, type); var y = cptable.utils.decode(65001, d); if(x !== y) throw "" + x + "!=" + y; var z = cptable.utils.encode(65001,x); if(z.length != d.length) throw "" + JSON.stringify(z) + " != " + JSON.stringify(d); for(var i = 0; i != d.length; ++i) if(d[i] !== z[i]) throw "" + i + " " + d[i] + "!=" + z[i]; } ``` The `utf8` tests verify utf8 encoding of the actual JS sources: ```>test.js describe('utf8', function() { cptable = require('./'); ['codepage.md','README.md','cptable.js','cputils.js'].forEach(function(f) { it('should process ' + f, function() { testfile(f,65001,'utf-8'); }); }); it('should process bits', function() { var files = fs.readdirSync('bits').filter(function(x){return x.substr(-3)==".js";}); files.forEach(function(f) { testfile('./bits/' + f,65001,'utf-8'); }); }); }); ``` The utf* and ascii tests attempt to test other magic formats: ```>test.js var m = cptable.utils.magic; Object.keys(m).forEach(function(t){describe(m[t], function() { it("should process base." + m[t], fs.existsSync('./test_files/base.' + m[t]) ? function() { testfile('./test_files/base.' + m[t], t, m[t]); } : null); });}) ``` # Nitty Gritty ```json>package.json { "name": "codepage", "version": "0.5.3", "author": "SheetJS", "description": "pure-JS library to handle codepages", "keywords": [ "codepage", "iconv", "convert", "strings" ], "main": "cputils.js", "dependencies": { "voc":"" }, "devDependencies": { "mocha":"" }, "scripts": { "build": "make js", "test": "make test" }, "repository": {"type":"git","url":"git://github.com/SheetJS/js-codepage.git"}, "bugs": { "url": "https://github.com/SheetJS/js-codepage/issues" }, "license": "Apache-2.0", "engines": { "node": ">=0.8" } } ``` ```>.vocrc { "post": "make js" } ``` ```make>Makefile SHELL=/bin/bash VOC=voc .PHONY: js voc voc: codepage.md $(VOC) codepage.md js: bash make.sh <(awk -F, '$$3=="1"' pages.csv) sbcs.js cptable bash make.sh clean: rm -f make.sh Makefile .vocrc package.json *.csv bits/*.js test: mocha -R spec ``` ```>.gitignore .gitignore codepages/ .vocrc node_modules/ Makefile make.sh make.njs pages.csv ```