2023-02-24 07:46:48 +00:00
|
|
|
---
|
|
|
|
title: Databases and Stores
|
2023-02-28 11:40:44 +00:00
|
|
|
pagination_prev: demos/desktop/index
|
|
|
|
pagination_next: demos/local/index
|
2023-02-24 07:46:48 +00:00
|
|
|
---
|
|
|
|
|
|
|
|
import DocCardList from '@theme/DocCardList';
|
|
|
|
import {useCurrentSidebarCategory} from '@docusaurus/theme-common';
|
|
|
|
|
|
|
|
"Database" is a catch-all term referring to traditional RDBMS as well as K/V
|
|
|
|
stores, document databases, and other "NoSQL" storages. There are many external
|
|
|
|
database systems as well as browser APIs like WebSQL and `localStorage`
|
|
|
|
|
|
|
|
## Data Storage
|
|
|
|
|
|
|
|
### Structured Tables
|
|
|
|
|
|
|
|
Database tables are a common import and export target for spreadsheets. One
|
|
|
|
common representation of a database table is an array of JS objects whose keys
|
|
|
|
are column headers and whose values are the underlying data values. For example,
|
|
|
|
|
|
|
|
| Name | Index |
|
|
|
|
| :----------- | ----: |
|
|
|
|
| Barack Obama | 44 |
|
|
|
|
| Donald Trump | 45 |
|
|
|
|
| Joseph Biden | 46 |
|
|
|
|
|
|
|
|
is naturally represented as an array of objects
|
|
|
|
|
|
|
|
```js
|
|
|
|
[
|
|
|
|
{ Name: "Barack Obama", Index: 44 },
|
|
|
|
{ Name: "Donald Trump", Index: 45 },
|
|
|
|
{ Name: "Joseph Biden", Index: 46 }
|
|
|
|
]
|
|
|
|
```
|
|
|
|
|
|
|
|
The `sheet_to_json` and `json_to_sheet` helper functions work with objects of
|
|
|
|
similar shape, converting to and from worksheet objects. The corresponding
|
|
|
|
worksheet would include a header row for the labels:
|
|
|
|
|
|
|
|
```
|
|
|
|
XXX| A | B |
|
|
|
|
---+--------------+-------+
|
|
|
|
1 | Name | Index |
|
|
|
|
2 | Barack Obama | 44 |
|
|
|
|
3 | Donald Trump | 45 |
|
|
|
|
3 | Joseph Biden | 46 |
|
|
|
|
```
|
|
|
|
|
|
|
|
### Unstructured Data
|
|
|
|
|
|
|
|
"Schema-less" / "NoSQL" databases allow for arbitrary keys and values within the
|
|
|
|
entries in the database. K/V stores and Objects add additional restrictions.
|
|
|
|
|
|
|
|
There is no natural way to translate arbitrarily shaped schemas to worksheets
|
|
|
|
in a workbook. One common trick is to dedicate one worksheet to holding named
|
|
|
|
keys. For example, considering the JS object:
|
|
|
|
|
|
|
|
```json
|
|
|
|
{
|
|
|
|
"title": "SheetDB",
|
|
|
|
"metadata": {
|
|
|
|
"author": "SheetJS",
|
|
|
|
"code": 7262
|
|
|
|
},
|
|
|
|
"data": [
|
|
|
|
{ "Name": "Barack Obama", "Index": 44 },
|
|
|
|
{ "Name": "Donald Trump", "Index": 45 },
|
|
|
|
]
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
A dedicated worksheet should store the one-off named values:
|
|
|
|
|
|
|
|
```
|
|
|
|
XXX| A | B |
|
|
|
|
---+-----------------+---------+
|
|
|
|
1 | Path | Value |
|
|
|
|
2 | title | SheetDB |
|
|
|
|
3 | metadata.author | SheetJS |
|
|
|
|
4 | metadata.code | 7262 |
|
|
|
|
```
|
|
|
|
|
|
|
|
## Data Interchange
|
|
|
|
|
|
|
|
### Exporting Data
|
|
|
|
|
|
|
|
There are NodeJS connector libraries for many popular RDBMS systems. Libraries
|
|
|
|
have facilities for connecting to a database, executing queries, and obtaining
|
|
|
|
results as arrays of JS objects that can be passed to `json_to_sheet`. The main
|
|
|
|
differences surround API shape and supported data types.
|
|
|
|
|
|
|
|
For example, `better-sqlite3` is a connector library for SQLite. The result of
|
|
|
|
a `SELECT` query is an array of objects suitable for `json_to_sheet`:
|
|
|
|
|
|
|
|
```js
|
|
|
|
var aoo = db.prepare("SELECT * FROM 'Presidents' LIMIT 100000").all();
|
|
|
|
// highlight-next-line
|
|
|
|
var worksheet = XLSX.utils.json_to_sheet(aoo);
|
|
|
|
```
|
|
|
|
|
|
|
|
Other databases will require post-processing. For example, MongoDB results
|
|
|
|
include the Object ID (usually stored in the `_id` key). This can be removed
|
|
|
|
before generating a worksheet:
|
|
|
|
|
|
|
|
```js
|
|
|
|
const aoo = await db.collection('coll').find({}).toArray();
|
|
|
|
// highlight-next-line
|
|
|
|
aoo.forEach((x) => delete x._id);
|
|
|
|
const ws = XLSX.utils.json_to_sheet(aoo);
|
|
|
|
```
|
|
|
|
|
|
|
|
### Importing Data
|
|
|
|
|
|
|
|
When a strict schema is needed, the `sheet_to_json` helper function generates
|
|
|
|
arrays of JS objects that can be scanned to determine the column "types".
|
|
|
|
|
2023-09-24 03:59:48 +00:00
|
|
|
:::note pass
|
2023-02-24 07:46:48 +00:00
|
|
|
|
|
|
|
Document databases like MongoDB tend not to require schemas. Arrays of objects
|
|
|
|
can be used directly without setting up a schema:
|
|
|
|
|
|
|
|
```js
|
|
|
|
const aoo = XLSX.utils.sheet_to_json(ws);
|
|
|
|
// highlight-next-line
|
|
|
|
await db.collection('coll').insertMany(aoo, { ordered: true });
|
|
|
|
```
|
|
|
|
|
|
|
|
:::
|
|
|
|
|
|
|
|
The ["SQL Connectors"](/docs/demos/data/sql) demo includes sample functions for
|
|
|
|
generating SQL CREATE TABLE and INSERT queries.
|
|
|
|
|
|
|
|
## DSV Interchange
|
|
|
|
|
|
|
|
Many databases offer utilities for reading and writing CSV, pipe-separated
|
|
|
|
documents, and other simple data files. They enable workflows where the library
|
|
|
|
generates CSV data for the database to process or where the library parses CSV
|
|
|
|
files created by the database.
|
|
|
|
|
|
|
|
#### Worksheet to CSV
|
|
|
|
|
|
|
|
CSV data can be generated from worksheets using `XLSX.utils.sheet_to_csv`.
|
|
|
|
|
|
|
|
```js
|
|
|
|
// starting from a worksheet object
|
|
|
|
const csv = XLSX.utils.sheet_to_json(ws);
|
|
|
|
|
|
|
|
// whole workbook conversion
|
|
|
|
const csv_arr = wb.SheetNames.map(n => XLSX.utils.sheet_to_json(wb.Sheets[n]));
|
|
|
|
```
|
|
|
|
|
|
|
|
#### CSV to Worksheet
|
|
|
|
|
|
|
|
`XLSX.read` can read strings with CSV data. It will generate single-sheet
|
|
|
|
workbooks with worksheet name `Sheet1`.
|
|
|
|
|
|
|
|
Where supported, `XLSX.readFile` can read files.
|
|
|
|
|
|
|
|
```js
|
|
|
|
// starting from a CSV string
|
|
|
|
const ws_str = XLSX.read(csv_str, {type: "string"}).Sheets.Sheet1;
|
|
|
|
|
|
|
|
// starting from a CSV binary string (e.g. `FileReader#readAsBinaryString`)
|
|
|
|
const ws_bstr = XLSX.read(csv_bstr, {type: "binary"}).Sheets.Sheet1;
|
|
|
|
|
|
|
|
// starting from a CSV file in NodeJS or Bun or Deno
|
|
|
|
const ws_file = XLSX.readFile("test.csv").Sheets.Sheet1;
|
|
|
|
```
|
|
|
|
|
|
|
|
## Demos
|
|
|
|
|
|
|
|
### Web APIs
|
|
|
|
|
|
|
|
The following Web APIs are featured in separate demos:
|
|
|
|
|
|
|
|
<ul>{useCurrentSidebarCategory().items.filter(item => item.customProps?.type == "web").map(item => {
|
|
|
|
const listyle = (item.customProps?.icon) ? {
|
|
|
|
listStyleImage: `url("${item.customProps.icon}")`
|
|
|
|
} : {};
|
|
|
|
return (<li style={listyle} {...(item.customProps?.class ? {className: item.customProps.class}: {})}>
|
|
|
|
<a href={item.href}>{item.label}</a>{item.customProps?.summary && (" - " + item.customProps.summary)}
|
|
|
|
</li>);
|
2023-06-01 08:25:44 +00:00
|
|
|
})}
|
2023-09-18 06:44:33 +00:00
|
|
|
<li><a href="/docs/demos/local/storageapi">Local Storage API</a></li>
|
|
|
|
<li><a href="/docs/demos/local/indexeddb">IndexedDB API</a></li>
|
|
|
|
</ul>
|
2023-02-24 07:46:48 +00:00
|
|
|
|
|
|
|
### SQL Databases
|
|
|
|
|
|
|
|
The following SQL-related topics are covered in separate demos:
|
|
|
|
|
|
|
|
<ul>{useCurrentSidebarCategory().items.filter(item => item.customProps?.sql).map(item => {
|
|
|
|
const listyle = (item.customProps?.icon) ? {
|
|
|
|
listStyleImage: `url("${item.customProps.icon}")`
|
|
|
|
} : {};
|
|
|
|
return (<li style={listyle} {...(item.customProps?.class ? {className: item.customProps.class}: {})}>
|
|
|
|
<a href={item.href}>{item.label}</a>{item.customProps?.summary && (" - " + item.customProps.summary)}
|
|
|
|
</li>);
|
|
|
|
})}</ul>
|
|
|
|
|
|
|
|
### NoSQL Data Stores
|
|
|
|
|
|
|
|
Demos for the following "NoSQL" data stores apply structured access patterns:
|
|
|
|
|
|
|
|
<ul>{useCurrentSidebarCategory().items.filter(item => item.customProps?.type == "document").map(item => {
|
|
|
|
const listyle = (item.customProps?.icon) ? {
|
|
|
|
listStyleImage: `url("${item.customProps.icon}")`
|
|
|
|
} : {};
|
|
|
|
return (<li style={listyle} {...(item.customProps?.class ? {className: item.customProps.class}: {})}>
|
|
|
|
<a href={item.href}>{item.label}</a>{item.customProps?.summary && (" - " + item.customProps.summary)}
|
|
|
|
</li>);
|
|
|
|
})}</ul>
|
|
|
|
|
|
|
|
Demos for the following "NoSQL" data stores apply unstructured access patterns:
|
|
|
|
|
|
|
|
<ul>{useCurrentSidebarCategory().items.filter(item => item.customProps?.type == "nosql").map(item => {
|
|
|
|
const listyle = (item.customProps?.icon) ? {
|
|
|
|
listStyleImage: `url("${item.customProps.icon}")`
|
|
|
|
} : {};
|
|
|
|
return (<li style={listyle} {...(item.customProps?.class ? {className: item.customProps.class}: {})}>
|
|
|
|
<a href={item.href}>{item.label}</a>{item.customProps?.summary && (" - " + item.customProps.summary)}
|
|
|
|
</li>);
|
|
|
|
})}</ul>
|