12 KiB
sidebar_position | title |
---|---|
9 | Databases |
import current from '/version.js'; import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem';
"Database" is a catch-all term referring to traditional RDBMS as well as K/V
stores, document databases, and other "NoSQL" storages. There are many external
database systems as well as browser APIs like WebSQL and localStorage
This demo discusses general strategies and provides examples for a variety of database systems. The examples are merely intended to demonstrate very basic functionality.
Structured Tables
Database tables are a common import and export target for spreadsheets. One common representation of a database table is an array of JS objects whose keys are column headers and whose values are the underlying data values. For example,
Name | Index |
---|---|
Barack Obama | 44 |
Donald Trump | 45 |
Joseph Biden | 46 |
is naturally represented as an array of objects
[
{ Name: "Barack Obama", Index: 44 },
{ Name: "Donald Trump", Index: 45 },
{ Name: "Joseph Biden", Index: 46 }
]
The sheet_to_json
and json_to_sheet
helper functions work with objects of
similar shape, converting to and from worksheet objects. The corresponding
worksheet would include a header row for the labels:
XXX| A | B |
---+--------------+-------+
1 | Name | Index |
2 | Barack Obama | 44 |
3 | Donald Trump | 45 |
3 | Joseph Biden | 46 |
Building Worksheets from Structured Tables
There are NodeJS connector libraries for many popular RDBMS systems. Libraries
have facilities for connecting to a database, executing queries, and obtaining
results as arrays of JS objects that can be passed to json_to_sheet
. The main
differences surround API shape and supported data types.
For example, better-sqlite3
is a connector library for SQLite. The result of
a SELECT
query is an array of objects suitable for json_to_sheet
:
var aoo = db.prepare("SELECT * FROM 'Presidents' LIMIT 100000").all();
// highlight-next-line
var worksheet = XLSX.utils.json_to_sheet(aoo);
Other databases will require post-processing. For example, MongoDB results
include the Object ID (usually stored in the _id
key). This can be removed
before generating a worksheet:
const aoo = await db.collection('coll').find({}).toArray();
// highlight-next-line
aoo.forEach((x) => delete x._id);
const ws = XLSX.utils.json_to_sheet(aoo);
Building Schemas from Worksheets
When a strict schema is needed, the sheet_to_json
helper function generates
arrays of JS objects that can be scanned to determine the column "types".
:::note
Document databases like MongoDB tend not to require schemas. Arrays of objects can be used directly without setting up a schema:
const aoa = XLSX.utils.sheet_to_json(ws);
// highlight-next-line
await db.collection('coll').insertMany(aoa, { ordered: true });
:::
This example will fetch https://sheetjs.com/cd.xls, scan the columns of the first worksheet to determine data types, and generate 6 PostgreSQL statements.
Explanation (click to show)
The relevant generate_sql
function takes a worksheet name and a table name:
// define mapping between determined types and PostgreSQL types
const PG = { "n": "float8", "s": "text", "b": "boolean" };
function generate_sql(ws, wsname) {
// generate an array of objects from the data
const aoo = XLSX.utils.sheet_to_json(ws);
// types will map column headers to types, while hdr holds headers in order
const types = {}, hdr = [];
// loop across each row object
aoo.forEach(row =>
// Object.entries returns a row of [key, value] pairs. Loop across those
Object.entries(row).forEach(([k,v]) => {
// If this is first time seeing key, mark unknown and append header array
if(!types[k]) { types[k] = "?"; hdr.push(k); }
// skip null and undefined
if(v == null) return;
// check and resolve type
switch(typeof v) {
case "string": // strings are the broadest type
types[k] = "s"; break;
case "number": // if column is not string, number is the broadest type
if(types[k] != "s") types[k] = "n"; break;
case "boolean": // only mark boolean if column is unknown or boolean
if("?b".includes(types[k])) types[k] = "b"; break;
default: types[k] = "s"; break; // default to string type
}
})
);
// The final array consists of the CREATE TABLE query and a series of INSERTs
return [
// generate CREATE TABLE query and return batch
`CREATE TABLE \`${wsname}\` (${hdr.map(h =>
// column name must be wrapped in backticks
`\`${h}\` ${PG[types[h]]}`
).join(", ")});`
].concat(aoo.map(row => { // generate INSERT query for each row
// entries will be an array of [key, value] pairs for the data in the row
const entries = Object.entries(row);
// fields will hold the column names and values will hold the values
const fields = [], values = [];
// check each key/value pair in the row
entries.forEach(([k,v]) => {
// skip null / undefined
if(v == null) return;
// column name must be wrapped in backticks
fields.push(`\`${k}\``);
// when the field type is numeric, `true` -> 1 and `false` -> 0
if(types[k] == "n") values.push(typeof v == "boolean" ? (v ? 1 : 0) : v);
// otherwise,
else values.push(`'${v.toString().replaceAll("'", "''")}'`);
})
if(fields.length) return `INSERT INTO \`${wsname}\` (${fields.join(", ")}) VALUES (${values.join(", ")})`;
})).filter(x => x); // filter out skipped rows
}
function SheetJSQLWriter() {
// define mapping between determined types and PostgreSQL types
const PG = { "n": "float8", "s": "text", "b": "boolean" };
function generate_sql(ws, wsname) {
const aoo = XLSX.utils.sheet_to_json(ws);
const types = {}, hdr = [];
// loop across each key in each column
aoo.forEach(row => Object.entries(row).forEach(([k,v]) => {
// set up type if header hasn't been seen
if(!types[k]) { types[k] = "?"; hdr.push(k); }
// check and resolve type
switch(typeof v) {
case "string": types[k] = "s"; break;
case "number": if(types[k] != "s") types[k] = "n"; break;
case "boolean": if("?b".includes(types[k])) types[k] = "b"; break;
default: types[k] = "s"; break;
}
}));
return [
// generate CREATE TABLE query and return batch
`CREATE TABLE \`${wsname}\` (${hdr.map(h => `\`${h}\` ${PG[types[h]]}`).join(", ")});`
].concat(aoo.map(row => {
const entries = Object.entries(row);
const fields = [], values = [];
entries.forEach(([k,v]) => {
if(v == null) return;
fields.push(`\`${k}\``);
if(types[k] == "n") values.push(typeof v == "boolean" ? (v ? 1 : 0) : v);
else values.push(`'${v.toString().replaceAll("'", "''")}'`);
})
if(fields.length) return `INSERT INTO \`${wsname}\` (${fields.join(", ")}) VALUES (${values.join(", ")})`;
})).filter(x => x).slice(0, 5);
}
const [url, setUrl] = React.useState("https://sheetjs.com/cd.xls");
const set_url = React.useCallback((evt) => setUrl(evt.target.value));
const [out, setOut] = React.useState("");
const xport = React.useCallback(async() => {
console.log(url);
const ab = await (await fetch(url)).arrayBuffer();
const wb = XLSX.read(ab), wsname = wb.SheetNames[0];
setOut(generate_sql(wb.Sheets[wsname], wsname).join("\n"));
});
return ( <> {out && (<pre>{out}</pre>)}
<b>URL: </b><input type="text" value={url} onChange={set_url} size="50"/>
<br/><button onClick={xport}><b>Fetch!</b></button>
</> );
}
SQL
SQLite
Most platforms offer a simple way to query SQLite databases.
The following example shows how to query for each table in an SQLite database, query for the data for each table, add each non-empty table to a workbook, and export as XLSX.
The Northwind database is available in SQLite form.
Download and expand the zip archive to reveal Northwind_large.sqlite
The better-sqlite3
module
provides a very simple API for working with SQLite databases. Statement#all
runs a prepared statement and returns an array of JS objects.
- Install the dependencies:
$ npm i --save https://cdn.sheetjs.com/xlsx-latest/xlsx-latest.tgz better-sqlite3
- Save the following to
node.mjs
:
/* Load SQLite3 connector library */
import Database from "better-sqlite3";
/* Load SheetJS library */
import * as XLSX from 'xlsx/xlsx.mjs';
import * as fs from 'fs';
XLSX.set_fs(fs);
/* Initialize database */
var db = Database("Northwind_large.sqlite");
/* Create new workbook */
var wb = XLSX.utils.book_new();
/* Get list of table names */
var sql = db.prepare("SELECT name FROM sqlite_master WHERE type='table'");
var result = sql.all();
/* Loop across each name */
result.forEach(function(row) {
/* Get first 100K rows */
var aoo = db.prepare("SELECT * FROM '" + row.name + "' LIMIT 100000").all();
if(aoo.length > 0) {
/* Create Worksheet from the row objects */
var ws = XLSX.utils.json_to_sheet(aoo, {dense: true});
/* Add to Workbook */
XLSX.utils.book_append_sheet(wb, ws, row.name);
}
});
/* Write File */
XLSX.writeFile(wb, "node.xlsx");
- Run
node node.mjs
and opennode.xlsx
Bun ships with a built-in high-performance module bun:sqlite
.
- Install the dependencies:
$ npm i --save https://cdn.sheetjs.com/xlsx-latest/xlsx-latest.tgz
- Save the following to
bun.mjs
:
/* Load SQLite3 connector library */
import { Database } from "bun:sqlite";
/* Load SheetJS library */
import * as XLSX from 'xlsx/xlsx.mjs';
import * as fs from 'fs';
XLSX.set_fs(fs);
/* Initialize database */
var db = Database.open("Northwind_large.sqlite");
/* Create new workbook */
var wb = XLSX.utils.book_new();
/* Get list of table names */
var sql = db.prepare("SELECT name FROM sqlite_master WHERE type='table'");
var result = sql.all();
/* Loop across each name */
result.forEach(function(row) {
/* Get first 100K rows */
var aoo = db.prepare("SELECT * FROM '" + row.name + "' LIMIT 100000").all();
if(aoo.length > 0) {
/* Create Worksheet from the row objects */
var ws = XLSX.utils.json_to_sheet(aoo, {dense: true});
/* Add to Workbook */
XLSX.utils.book_append_sheet(wb, ws, row.name);
}
});
/* Write File */
XLSX.writeFile(wb, "bun.xlsx");
- Run
bun bun.mjs
and openbun.xlsx
WebSQL
:::warning
This information is included for legacy deployments. Web SQL is deprecated.
https://caniuse.com/sql-storage has up-to-date info on browser support.
::::
WebSQL was a popular SQL-based in-browser database available on Chrome. In practice, it is powered by SQLite, and most simple SQLite-compatible queries work as-is in WebSQL.
The public demo http://sheetjs.com/sql generates a database from workbook.
Objects, K/V and "Schema-less" Databases
So-called "Schema-less" databases allow for arbitrary keys and values within the entries in the database. K/V stores and Objects add additional restrictions.
There is no natural way to translate arbitrarily shaped schemas to worksheets in a workbook. One common trick is to dedicate one worksheet to holding named keys. For example, considering the JS object:
{
"title": "SheetDB",
"metadata": {
"author": "SheetJS",
"code": 7262
},
"data": [
{ "Name": "Barack Obama", "Index": 44 },
{ "Name": "Donald Trump", "Index": 45 },
]
}
A dedicated worksheet should store the one-off named values:
XXX| A | B |
---+-----------------+---------+
1 | Path | Value |
2 | title | SheetDB |
3 | metadata.author | SheetJS |
4 | metadata.code | 7262 |