20 KiB
title | sidebar_label | pagination_prev | pagination_next |
---|---|---|---|
Sheets in TensorFlow | TensorFlow.js | demos/index | demos/frontend/index |
import current from '/version.js'; import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem'; import CodeBlock from '@theme/CodeBlock';
<head> </head>TensorFlow.js (shortened to TF.js) is a library for machine learning in JavaScript.
SheetJS is a JavaScript library for reading and writing data from spreadsheets.
This demo uses TensorFlow.js and SheetJS to process data in spreadsheets. We'll explore how to load spreadsheet data into TF.js datasets and how to export results back to spreadsheets.
-
"CSV Data Interchange" uses SheetJS to process sheets and generate CSV data that TF.js can import.
-
"JS Array Interchange" uses SheetJS to process sheets and generate rows of objects that can be post-processed.
:::note Tested Deployments
Each browser demo was tested in the following environments:
Browser | TF.js version | Date |
---|---|---|
Chrome 127 | 4.20.0 |
2024-08-16 |
Safari 17.4 | 4.20.0 |
2024-08-16 |
The NodeJS demo was tested in the following environments:
NodeJS | TF.js version | Date |
---|---|---|
22.3.0 |
4.20.0 (@tensorflow/tfjs ) |
2024-08-16 |
The Kaioken demo was tested in the following environments:
Kaioken | TF.js version | Date |
---|---|---|
0.25.3 |
4.20.0 |
2024-08-16 |
:::
Installation
Standalone Browser Scripts
Live code blocks in this page use the TF.js 4.20.0
standalone build.
Standalone scripts are available on various CDNs including UNPKG. The latest
version can be loaded with the following SCRIPT
tag.
The SheetJS Standalone scripts can be loaded after the TF.js standalone script.
{`\
`}Frameworks and Bundlers
The "Frameworks" section covers installation with Yarn and other package managers.
@tensorflow/tfjs
and SheetJS modules should be installed using a package manager:
:::caution pass
Newer releases of Yarn may throw an error:
Usage Error: It seems you are trying to add a package using a https:... url; we now require package names to be explicitly specified.
Try running the command again with the package name prefixed: yarn add my-package@https:...
The workaround is to prepend the URL with xlsx@
:
{\ yarn add xlsx@https://cdn.sheetjs.com/xlsx-${current}/xlsx-${current}.tgz @tensorflow/tfjs
}
:::
NodeJS
The SheetJS NodeJS module can be imported in NodeJS scripts that use TF.js.
There are two options for NodeJS:
- the pure JavaScript bindings module is
@tensorflow/tfjs
- the native bindings module is
@tensorflow/tfjs-node
:::danger pass
When this demo was last tested, there were issues with the native binding:
Error: The specified module could not be found.
\\?\C:\Users\SheetJS\node_modules\@tensorflow\tfjs-node\lib\napi-v8\tfjs_binding.node
For general compatibility, the demos use the pure @tensorflow/tfjs
binding.
:::
{`\ npm i --save https://cdn.sheetjs.com/xlsx-${current}/xlsx-${current}.tgz @tensorflow/tfjs @tensorflow/tfjs-node`} {`\ pnpm install --save https://cdn.sheetjs.com/xlsx-${current}/xlsx-${current}.tgz @tensorflow/tfjs @tensorflow/tfjs-node`} {`\ yarn add https://cdn.sheetjs.com/xlsx-${current}/xlsx-${current}.tgz @tensorflow/tfjs @tensorflow/tfjs-node`}:::caution pass
Newer releases of Yarn may throw an error:
Usage Error: It seems you are trying to add a package using a https:... url; we now require package names to be explicitly specified.
Try running the command again with the package name prefixed: yarn add my-package@https:...
The workaround is to prepend the URL with xlsx@
:
{\ yarn add xlsx@https://cdn.sheetjs.com/xlsx-${current}/xlsx-${current}.tgz @tensorflow/tfjs @tensorflow/tfjs-node
}
:::
CSV Data Interchange
tf.data.csv
1 generates a Dataset from CSV data. The function expects a URL.
:::note pass
When this demo was last tested, there was no direct method to pass a CSV string to the underlying parser.
:::
Fortunately blob URLs are supported.
flowchart LR
ws((SheetJS\nWorksheet))
csv(CSV\nstring)
url{{Data\nURL}}
dataset[(TF.js\nDataset)]
ws --> |sheet_to_csv\nSheetJS| csv
csv --> |JavaScript\nAPIs| url
url --> |tf.data.csv\nTensorFlow.js| dataset
The SheetJS sheet_to_csv
method2 generates a CSV string from a worksheet
object. Using standard JavaScript techniques, a blob URL can be constructed:
function worksheet_to_csv_url(worksheet) {
/* generate CSV */
const csv = XLSX.utils.sheet_to_csv(worksheet);
/* CSV -> Uint8Array -> Blob */
const u8 = new TextEncoder().encode(csv);
const blob = new Blob([u8], { type: "text/csv" });
/* generate a blob URL */
return URL.createObjectURL(blob);
}
CSV Demo
This demo shows a simple model fitting using the "cars" dataset from TensorFlow. The sample XLS file contains the data. The data processing mirrors the official "Making Predictions from 2D Data" demo3.
flowchart LR
file[(Remote\nFile)]
subgraph SheetJS Operations
ab[(Data\nBytes)]
wb(((SheetJS\nWorkbook)))
ws((SheetJS\nWorksheet))
csv(CSV\nstring)
end
subgraph TensorFlow.js Operations
url{{Data\nURL}}
dataset[(TF.js\nDataset)]
results((Results))
end
file --> |fetch\n\n| ab
ab --> |read\n\n| wb
wb --> |select\nsheet| ws
ws --> |sheet_to_csv\n\n| csv
csv --> |JS\nAPI| url
url --> |tf.data.csv\nTF.js| dataset
dataset --> |fitDataset\nTF.js| results
The demo builds a model for predicting MPG from Horsepower data. It:
- fetches https://docs.sheetjs.com/cd.xls
- parses the data with the SheetJS
read
4 method - selects the first worksheet5 and converts to CSV using
sheet_to_csv
6 - generates a blob URL from the CSV text
- generates a TF.js dataset with
tf.data.csv
7 and selects data columns - builds a model and trains with
fitDataset
8 - predicts MPG from a set of sample inputs and displays results in a table
Live Demo
Live Demo (click to show)
:::caution pass
In some test runs, the results did not make sense given the underlying data. The dependent and independent variables are expected to be anti-correlated.
This is a known issue in TF.js and affects the official demos
:::
:::caution pass
If the live demo shows a message
ReferenceError: tf is not defined
please refresh the page. This is a known bug in the documentation generator.
:::
function SheetJSToTFJSCSV() {
const [output, setOutput] = React.useState("");
const [results, setResults] = React.useState([]);
const [disabled, setDisabled] = React.useState(false);
function worksheet_to_csv_url(worksheet) {
/* generate CSV */
const csv = XLSX.utils.sheet_to_csv(worksheet);
/* CSV -> Uint8Array -> Blob */
const u8 = new TextEncoder().encode(csv);
const blob = new Blob([u8], { type: "text/csv" });
/* generate a blob URL */
return URL.createObjectURL(blob);
}
const doit = React.useCallback(async () => {
setResults([]); setOutput(""); setDisabled(true);
try {
/* fetch file */
const f = await fetch("https://docs.sheetjs.com/cd.xls");
const ab = await f.arrayBuffer();
/* parse file and get first worksheet */
const wb = XLSX.read(ab);
const ws = wb.Sheets[wb.SheetNames[0]];
/* generate blob URL */
const url = worksheet_to_csv_url(ws);
/* feed to tf.js */
const dataset = tf.data.csv(url, {
hasHeader: true,
configuredColumnsOnly: true,
columnConfigs:{
"Horsepower": { required: false, default: 0},
"Miles_per_Gallon": { required: false, default: 0, isLabel: true }
}
});
/* pre-process data */
let flat = dataset
.map(({xs,ys}) =>({xs: Object.values(xs), ys: Object.values(ys)}))
.filter(({xs,ys}) => [...xs,...ys].every(v => v>0));
/* normalize manually :( */
let minX = Infinity, maxX = -Infinity, minY = Infinity, maxY = -Infinity;
await flat.forEachAsync(({xs, ys}) => {
minX = Math.min(minX, xs[0]); maxX = Math.max(maxX, xs[0]);
minY = Math.min(minY, ys[0]); maxY = Math.max(maxY, ys[0]);
});
flat = flat.map(({xs, ys}) => ({xs:xs.map(v => (v-minX)/(maxX - minX)),ys:ys.map(v => (v-minY)/(maxY-minY))}));
flat = flat.batch(32);
/* build and train model */
const model = tf.sequential();
model.add(tf.layers.dense({inputShape: [1], units: 1}));
model.compile({ optimizer: tf.train.sgd(0.000001), loss: 'meanSquaredError' });
await model.fitDataset(flat, { epochs: 100, callbacks: { onEpochEnd: async (epoch, logs) => {
setOutput(`${epoch}:${logs.loss}`);
}}});
/* predict values */
const inp = tf.linspace(0, 1, 9);
const pred = model.predict(inp);
const xs = await inp.dataSync(), ys = await pred.dataSync();
setResults(Array.from(xs).map((x, i) => [ x * (maxX - minX) + minX, ys[i] * (maxY - minY) + minY ]));
setOutput("");
} catch(e) { setOutput(`ERROR: ${String(e)}`); } finally { setDisabled(false);}
});
return ( <>
<button onClick={doit} disabled={disabled}>Click to run</button><br/>
{output && <pre>{output}</pre> || <></>}
{results.length && <table><thead><tr><th>Horsepower</th><th>MPG</th></tr></thead><tbody>
{results.map((r,i) => <tr key={i}><td>{r[0]}</td><td>{r[1].toFixed(2)}</td></tr>)}
</tbody></table> || <></>}
</> );
}
NodeJS Demo
- Create a new project:
mkdir sheetjs-tfjs-csv
cd sheetjs-tfjs-csv
npm init -y
- Download
SheetJSTF.js
:
curl -LO https://docs.sheetjs.com/tfjs/SheetJSTF.js
- Install SheetJS and TF.js dependencies:
{\ npm i --save https://cdn.sheetjs.com/xlsx-${current}/xlsx-${current}.tgz @tensorflow/tfjs @tensorflow/tfjs-node
}
- Run the script:
node SheetJSTF.js
Kaioken Demo
:::tip pass
Kaioken is a popular front-end framework that uses patterns that will be familiar to ReactJS developers.
The SheetJS team strongly recommends using Kaioken in projects using TF.js.
:::
- Create a new site.
npm create vite sheetjs-tfjs-kaioken -- --template vanilla-ts
cd sheetjs-tfjs-kaioken
npm add --save kaioken
npm add --save vite-plugin-kaioken -D
- Create a new file
vite.config.ts
with the following content:
import { defineConfig } from "vite"
import kaioken from "vite-plugin-kaioken"
export default defineConfig({
plugins: [kaioken()],
})
- Edit
tsconfig.json
and add"jsx": "preserve"
withincompilerOptions
:
{
"compilerOptions": {
// highlight-next-line
"jsx": "preserve",
- Replace
src/main.ts
with the following codeblock:
import { mount } from "kaioken";
import App from "./SheetJSTF";
const root = document.getElementById("app");
mount(App, root!);
- Download
SheetJSTF.tsx
to thesrc
directory:
curl -L -o src/SheetJSTF.tsx https://docs.sheetjs.com/tfjs/SheetJSTF.tsx
- Install SheetJS and TF.js dependencies:
{\ npm i --save https://cdn.sheetjs.com/xlsx-${current}/xlsx-${current}.tgz @tensorflow/tfjs
}
- Start the development server:
npm run dev
The process will display a URL:
➜ Local: http://localhost:5173/
Open the displayed URL (http://localhost:5173/
in this example) with a web
browser. Click the "Click to Run" button to see the results.
JS Array Interchange
The official Linear Regression tutorial loads data from a JSON file:
[
{
"Name": "chevrolet chevelle malibu",
"Miles_per_Gallon": 18,
"Cylinders": 8,
"Displacement": 307,
"Horsepower": 130,
"Weight_in_lbs": 3504,
"Acceleration": 12,
"Year": "1970-01-01",
"Origin": "USA"
},
// ...
]
In real use cases, data is stored in spreadsheets
Following the tutorial, the data fetching method can be adapted to handle arrays
of objects, such as those generated by the SheetJS sheet_to_json
method9.
Differences from the official example are highlighted below:
/**
* Get the car data reduced to just the variables we are interested
* and cleaned of missing data.
*/
async function getData() {
// highlight-start
/* fetch file */
const carsDataResponse = await fetch('https://docs.sheetjs.com/cd.xls');
/* get file data (ArrayBuffer) */
const carsDataAB = await carsDataResponse.arrayBuffer();
/* parse */
const carsDataWB = XLSX.read(carsDataAB);
/* get first worksheet */
const carsDataWS = carsDataWB.Sheets[carsDataWB.SheetNames[0]];
/* generate array of JS objects */
const carsData = XLSX.utils.sheet_to_json(carsDataWS);
// highlight-end
const cleaned = carsData.map(car => ({
mpg: car.Miles_per_Gallon,
horsepower: car.Horsepower,
}))
.filter(car => (car.mpg != null && car.horsepower != null));
return cleaned;
}
Low-Level Operations
Data Transposition
A typical dataset in a spreadsheet will start with one header row and represent each data record in its own row. For example, the Iris dataset might look like
The SheetJS sheet_to_json
method10 will translate worksheet objects into an
array of row objects:
const aoo = [
{"sepal length": 5.1, "sepal width": 3.5, ...},
{"sepal length": 4.9, "sepal width": 3, ...},
...
];
TF.js and other libraries tend to operate on individual columns, equivalent to:
const sepal_lengths = [5.1, 4.9, ...];
const sepal_widths = [3.5, 3, ...];
When a tensor2d
can be exported, it will look different from the spreadsheet:
const data_set_2d = [
[5.1, 4.9, ...],
[3.5, 3, ...],
// ...
];
This is the transpose of how people use spreadsheets!
Exporting Datasets to a Worksheet
The aoa_to_sheet
method11 can generate a worksheet from an array of arrays.
ML libraries typically provide APIs to pull an array of arrays, but it will be
transposed. To export multiple data sets, the data should be transposed:
/* assuming data is an array of typed arrays */
const aoa = [];
for(let i = 0; i < data.length; ++i) {
for(let j = 0; j < data[i].length; ++j) {
if(!aoa[j]) aoa[j] = [];
aoa[j][i] = data[i][j];
}
}
/* aoa can be directly converted to a worksheet object */
const ws = XLSX.utils.aoa_to_sheet(aoa);
Importing Data from a Spreadsheet
sheet_to_json
with the option header: 1
12 will generate a row-major array
of arrays that can be transposed. However, it is more efficient to walk the
sheet manually:
/* find worksheet range */
const range = XLSX.utils.decode_range(ws['!ref']);
const out = []
/* walk the columns */
for(let C = range.s.c; C <= range.e.c; ++C) {
/* create the typed array */
const ta = new Float32Array(range.e.r - range.s.r + 1);
/* walk the rows */
for(let R = range.s.r; R <= range.e.r; ++R) {
/* find the cell, skip it if the cell isn't numeric or boolean */
const cell = ws["!data"] ? (ws["!data"][R]||[])[C] : ws[XLSX.utils.encode_cell({r:R, c:C})];
if(!cell || cell.t != 'n' && cell.t != 'b') continue;
/* assign to the typed array */
ta[R - range.s.r] = cell.v;
}
out.push(ta);
}
If the data set has a header row, the loop can be adjusted to skip those rows.
TF.js Tensors
A single Array#map
can pull individual named fields from the result, which
can be used to construct TensorFlow.js tensor objects:
const aoo = XLSX.utils.sheet_to_json(worksheet);
const lengths = aoo.map(row => row["sepal length"]);
const tensor = tf.tensor1d(lengths);
tf.Tensor
objects can be directly transposed using transpose
:
const aoo = XLSX.utils.sheet_to_json(worksheet);
// "x" and "y" are the fields we want to pull from the data
con st data = aoo.map(row => ([row["x"], row["y"]]));
// create a tensor representing two column datasets
const tensor = tf.tensor2d(data).transpose();
// individual columns can be accessed
const col1 = tensor.slice([0,0], [1,tensor.shape[1]]).flatten();
const col2 = tensor.slice([1,0], [1,tensor.shape[1]]).flatten();
For exporting, stack
can be used to collapse the columns into a linear array:
/* pull data into a Float32Array */
const result = tf.stack([col1, col2]).transpose();
const shape = tensor.shape;
const f32 = tensor.dataSync();
/* construct an array of arrays of the data in spreadsheet order */
const aoa = [];
for(let j = 0; j < shape[0]; ++j) {
aoa[j] = [];
for(let i = 0; i < shape[1]; ++i) aoa[j][i] = f32[j * shape[1] + i];
}
/* add headers to the top */
aoa.unshift(["x", "y"]);
/* generate worksheet */
const worksheet = XLSX.utils.aoa_to_sheet(aoa);
-
See
tf.data.csv
in the TensorFlow.js documentation ↩︎ -
The "Making Predictions from 2D Data" example uses a hosted JSON file. The sample XLS file includes the same data. ↩︎
-
See "Workbook Object" ↩︎
-
See
tf.data.csv
in the TensorFlow.js documentation ↩︎ -
See
tf.LayersModel.fitDataset
in the TensorFlow.js documentation ↩︎