docs.sheetjs.com/docz/docs/03-demos/07-data/index.md
2023-06-01 04:25:44 -04:00

7.0 KiB

title pagination_prev pagination_next
Databases and Stores demos/desktop/index demos/local/index

import DocCardList from '@theme/DocCardList'; import {useCurrentSidebarCategory} from '@docusaurus/theme-common';

"Database" is a catch-all term referring to traditional RDBMS as well as K/V stores, document databases, and other "NoSQL" storages. There are many external database systems as well as browser APIs like WebSQL and localStorage

Data Storage

Structured Tables

Database tables are a common import and export target for spreadsheets. One common representation of a database table is an array of JS objects whose keys are column headers and whose values are the underlying data values. For example,

Name Index
Barack Obama 44
Donald Trump 45
Joseph Biden 46

is naturally represented as an array of objects

[
  { Name: "Barack Obama", Index: 44 },
  { Name: "Donald Trump", Index: 45 },
  { Name: "Joseph Biden", Index: 46 }
]

The sheet_to_json and json_to_sheet helper functions work with objects of similar shape, converting to and from worksheet objects. The corresponding worksheet would include a header row for the labels:

XXX|      A       |   B   |
---+--------------+-------+
 1 | Name         | Index |
 2 | Barack Obama |    44 |
 3 | Donald Trump |    45 |
 3 | Joseph Biden |    46 |

Unstructured Data

"Schema-less" / "NoSQL" databases allow for arbitrary keys and values within the entries in the database. K/V stores and Objects add additional restrictions.

There is no natural way to translate arbitrarily shaped schemas to worksheets in a workbook. One common trick is to dedicate one worksheet to holding named keys. For example, considering the JS object:

{
  "title": "SheetDB",
  "metadata": {
    "author": "SheetJS",
    "code": 7262
  },
  "data": [
    { "Name": "Barack Obama", "Index": 44 },
    { "Name": "Donald Trump", "Index": 45 },
  ]
}

A dedicated worksheet should store the one-off named values:

XXX|        A        |    B    |
---+-----------------+---------+
 1 | Path            | Value   |
 2 | title           | SheetDB |
 3 | metadata.author | SheetJS |
 4 | metadata.code   |    7262 |

Data Interchange

Exporting Data

There are NodeJS connector libraries for many popular RDBMS systems. Libraries have facilities for connecting to a database, executing queries, and obtaining results as arrays of JS objects that can be passed to json_to_sheet. The main differences surround API shape and supported data types.

For example, better-sqlite3 is a connector library for SQLite. The result of a SELECT query is an array of objects suitable for json_to_sheet:

var aoo = db.prepare("SELECT * FROM 'Presidents' LIMIT 100000").all();
// highlight-next-line
var worksheet = XLSX.utils.json_to_sheet(aoo);

Other databases will require post-processing. For example, MongoDB results include the Object ID (usually stored in the _id key). This can be removed before generating a worksheet:

const aoo = await db.collection('coll').find({}).toArray();
// highlight-next-line
aoo.forEach((x) => delete x._id);
const ws = XLSX.utils.json_to_sheet(aoo);

Importing Data

When a strict schema is needed, the sheet_to_json helper function generates arrays of JS objects that can be scanned to determine the column "types".

:::note

Document databases like MongoDB tend not to require schemas. Arrays of objects can be used directly without setting up a schema:

const aoo = XLSX.utils.sheet_to_json(ws);
// highlight-next-line
await db.collection('coll').insertMany(aoo, { ordered: true });

:::

The "SQL Connectors" demo includes sample functions for generating SQL CREATE TABLE and INSERT queries.

DSV Interchange

Many databases offer utilities for reading and writing CSV, pipe-separated documents, and other simple data files. They enable workflows where the library generates CSV data for the database to process or where the library parses CSV files created by the database.

Worksheet to CSV

CSV data can be generated from worksheets using XLSX.utils.sheet_to_csv.

// starting from a worksheet object
const csv = XLSX.utils.sheet_to_json(ws);

// whole workbook conversion
const csv_arr = wb.SheetNames.map(n => XLSX.utils.sheet_to_json(wb.Sheets[n]));

CSV to Worksheet

XLSX.read can read strings with CSV data. It will generate single-sheet workbooks with worksheet name Sheet1.

Where supported, XLSX.readFile can read files.

// starting from a CSV string
const ws_str = XLSX.read(csv_str, {type: "string"}).Sheets.Sheet1;

// starting from a CSV binary string (e.g. `FileReader#readAsBinaryString`)
const ws_bstr = XLSX.read(csv_bstr, {type: "binary"}).Sheets.Sheet1;

// starting from a CSV file in NodeJS or Bun or Deno
const ws_file = XLSX.readFile("test.csv").Sheets.Sheet1;

Demos

Web APIs

The following Web APIs are featured in separate demos:

    {useCurrentSidebarCategory().items.filter(item => item.customProps?.type == "web").map(item => { const listyle = (item.customProps?.icon) ? { listStyleImage: `url("${item.customProps.icon}")` } : {}; return (
  • {item.label}{item.customProps?.summary && (" - " + item.customProps.summary)}
  • ); })}
  • IndexedDB API

SQL Databases

The following SQL-related topics are covered in separate demos:

    {useCurrentSidebarCategory().items.filter(item => item.customProps?.sql).map(item => { const listyle = (item.customProps?.icon) ? { listStyleImage: `url("${item.customProps.icon}")` } : {}; return (
  • {item.label}{item.customProps?.summary && (" - " + item.customProps.summary)}
  • ); })}

NoSQL Data Stores

Demos for the following "NoSQL" data stores apply structured access patterns:

    {useCurrentSidebarCategory().items.filter(item => item.customProps?.type == "document").map(item => { const listyle = (item.customProps?.icon) ? { listStyleImage: `url("${item.customProps.icon}")` } : {}; return (
  • {item.label}{item.customProps?.summary && (" - " + item.customProps.summary)}
  • ); })}

Demos for the following "NoSQL" data stores apply unstructured access patterns:

    {useCurrentSidebarCategory().items.filter(item => item.customProps?.type == "nosql").map(item => { const listyle = (item.customProps?.icon) ? { listStyleImage: `url("${item.customProps.icon}")` } : {}; return (
  • {item.label}{item.customProps?.summary && (" - " + item.customProps.summary)}
  • ); })}